
LOTUS:
Adaptive Text Search for Big Linked Data

Filip Ilievski, Wouter Beek, Marieke van Erp,
Laurens Rietveld and Stefan Schlobach

The Network Institute
VU University Amsterdam

{f.ilievski,w.g.j.beek,marieke.van.erp,
l.j.rietveld,k.s.schlobach}@vu.nl

Abstract. Finding relevant resources on the Semantic Web today is a
dirty job: there is no centralized lookup service and the support for natu-
ral language lookup is limited. In this paper, we present LOTUS: Linked
Open Text UnleaShed, a natural language entry point to a massive sub-
set of today’s Linked Open Data Cloud. While a wide array of matching
and ranking algorithms have been studied, there is no ultimate combina-
tion of matching and ranking that will work for every use case. LOTUS
recognizes the case-dependent nature of resource retrieval by allowing
users to choose from a wide palette of well-known matching and rank-
ing algorithms. LOTUS is an adaptive toolkit that allows user to easily
construct the form of resource retrieval that suits her use case best. In
this paper, we explain the LOTUS approach, its implementation and
the functionality it provides. We also demonstrate the ease with which
LOTUS allows Linked Data to be queried at an unprecedented scale in
different concrete and domain-specific scenarios. Finally we demonstrate
the scalability of LOTUS with respect to the LOD Laundromat data, the
biggest collection of easily accessible Linked Data currently available.

Keywords: Findability, Text Indexing, Semantic Search, Scalable Data
Management, User-Driven, LOD Laundromat

1 Introduction

A wealth of information is potentially available from Linked Open Data sources
such as those found in the LOD Cloud1 or LOD Laundromat [3]. However,
finding relevant resources on the Semantic Web today is not an easy job: there
is no centralized query service and the support for natural language look-up is
limited. A resource is typically ‘found’ by memorizing its resource-denoting IRI.
The lack of a Web-wide access point to resources through a flexible text index
is a serious obstacle for Linked Data consumption.

1 http://lod-cloud.net/

In this paper, we present LOTUS: Linked Open Text UnleaShed,2 a natural
language entry point to a large subset of today’s Linked Open Data Cloud.
Text search on the LOD Cloud is not a new phenomenon as Sindice3 and LOD
Cache4 show. However, LOTUS differs from these existing approaches in three
ways: 1) its scale (its index is about 100x bigger than Sindice’s index), 2) the
adaptability of its algorithms and data collection, and 3) its integration with a
novel Linked Data publishing and consumption ecosystem that does not depend
on IRI dereferenceability. sem LOTUS indexes every natural language literal
from the LOD Laundromat data collection, a large subset of today’s LOD CLoud
that spans tens of billions of ground statements. The task of resource retrieval
is a two-part process that includes both matching and ranking. Since there is
no single combination of matching and ranking that is optimal for every use
case, LOTUS enables the user to choose her own combination of matching and
ranking. In this paper, we present the LOTUS framework, its API, its approach
towards the customization of Semantic Web resource retrieval, and its initial
collection of matching and ranking algorithms.

The flexibility of the LOTUS approach towards resource retrieval makes it
attractive for a wide range of use cases such as Information Retrieval and Text
Analysis. For instance, existing Entity Linking systems such as DBpedia Spot-
light [11], Babelfy [12] and NERD tools [15]), rely on a single or limited set of
knowledge sources, typically DBpedia, and thus suffer from limited coverage.
LOTUS could inspire new research ideas for Entity Linking and facilitate Web
of Data-wide search and linking of entities.

The remainder of this paper is structured as follows. In Section 2, we detail
the problem of performing linguistic search on the LOD Cloud. In Section 3,
related work is presented. In Section 4, we describe the LOTUS framework, fol-
lowed by its implementation in Section 5. We then present some scalability tests
and typical usage scenarios of LOTUS in Section 6. We conclude by discussing
the key strengths, limitations and future plans for LOTUS in Section 7.

2 Problem description

How do we find relevant resources on the Semantic Web today? RDF resources
can be denoted by blank nodes, IRIs and literals. The Semantic Web currently
relies on the following findability strategies: datadumps, IRI dereferencing and
SPARQL query endpoints. We discuss these approaches in turn.

Datadumps Datadumps implement a rather simple way of finding resource-
denoting terms: if one knows the Web address of a datadump then one can
use that address to download the full contents of the file. This exposes all the
blank nodes, literals and IRIs that appear in that file (the solid arrows in Figure

2 An early version of LOTUS was presented at COLD 2015, an unarchived workshop
[10]. This paper is a significantly extended and updated version of that work.

3 http://www.sindice.com/, discontinued in 2014.
4 http://lod.openlinksw.com/

2

1a). Datadumps do not allow a specific resource to be found and do not link
to assertions that are about the same resource but that are published by other
sources.

Dereference An IRI dereferences to a set of statements in which that IRI
appears in the subject position and, optionally, statements in which that IRI
appears in the object position. Which expressions belong to the dereference re-
sult set of a given IRI is decided by the authority of that IRI, i.e., the person or
organization that pays for the domain that appears in the IRI’s authority compo-
nent (the dotted arrows in Figure 1a). Non-authoritative expressions about the
resource denoted by that IRI cannot be found directly. This includes statements
in which the same IRI appears in the subject position but that are hosted by an-
other authority at another server. In fact, non-authoritative statements can only
be found accidentally by navigating the interconnected graph of dereferencing
IRIs. Since blank nodes do not dereference (no arrow from blank nodes to IRIs
in Figure 1a) significant parts of the graph cannot be traversed. This problem is
not merely theoretical since 7% of all RDF terms are blank nodes [9]. In practice
this means that non-authoritative assertions are generally not findable.

Since only IRIs can be dereferenced, natural language access to the Semantic
Web cannot be gained at all through dereferencing. For instance, it is not possible
to find a resource-denoting IRI based on words that appear in RDF literals to
which it is related. It is also not possible to search for a resource-denoting IRI
based on keywords that only bear close similarity to (some of the) literals to
which the IRI is related.

Blank nodes

Documents

IRIs

Literals

(a) Semantic Web

Blank nodes

Documents

IRIs

Literals

Natural language text

(b) LOTUS+Frank

Fig. 1. Graph navigation on the Semantic Web using the standardized notion of IRI
dereferencing. A dotted arrow means that only authoritative data can be retrieved.
This figure shows the ideal situation in which all IRIs can be dereferences and all
dereferencing servers are available. Figure b shows graph navigation on the Semantic
Web using LOTUS (blue arrows) in combination with Frank (black arrows).

SPARQL endpoints SPARQL [8] is the Semantic Web query language. Com-
pared to IRI dereferencing a SPARQL endpoints provides a far more powerful
approach towards finding a resource-denoting term. For instance, SPARQL al-

3

lows resources to be found based on text search that matches literal terms. As
for the findability of non-authoritative expressions about a resource, SPARQL
have largely the same problems as the dereferenceability approach. While it is
possible to evaluate a SPARQL query over multiple datasets, these datasets
have to be included explicitly by using the SERVICE keyword [14]. This means
that an endpoint that disseminates non-authoritative statements can only be in-
cluded if its Web address is known beforehand, ‘solving’ the findability problem
by shifting it. The ideal situation would be to always query all SPARQL end-
points. Besides requiring a lenghty list of SERVICE keywords this would result
in bad performance since the slowest SPARQL endpoint would determine the
response time of the entire query. In addition to the unpracticality of finding
all non-authoritative endpoints that say something about a resource-denoting
term there is also no guarantee that all statements are disseminated by some
SPARQL endpoint. Empirical studies show that the number of known SPARQL
endpoint with acceptable availability is also rather low (approximately 125) [4].

The SPARQL query language is largely oriented towards matching graph
patterns and datatyped values. While the SPARQL specification defines versa-
tile Regular Expression-based operations on the lexical forms of literals, it does
not include string similarity matches or other more advanced NLP functionali-
ties.

Requirements Summarizing, the task of finding a resource and statements
about it is a big problem on today’s Semantic Web. Moreover, this problem will
not be solved by implementing existing approaches or standards in a better way,
but requires a completely novel approach instead. Based on the above consider-
ations, we specify the following list of requirements for a sufficient solution to
the problem of finding Semantic Web resources:

1. Resource findability should not depend on whether an IRI can be derefer-
enced or on SPARQL endpoint availability.

2. Authoritative and non-authoritative statements should both be findable.

3. The data that can be searched should include tens of billions of ground
statements and should include thousands of datasets.

4. Resource-denoting IRIs should be findable based on text-based search that
matches (parts of) literals that are asserted about that IRI, possibly by
multiple sources.

5. Text based search should include, but should not be limited to, Regular
Expression-based matching.

6. The search API must be usable for humans (Web UI) and machines (REST)
alike and must be freely available online.

7. Search results should be ranked according to a flexible collection of rankings.
Which rankings are used should be customizable in order to support a wide
range of use cases.

4

3 Related work

The need for easy navigation through the Linked Data Cloud has been early
recognized by the community. Swoogle [7] addresses this by performing ranking
at different levels of granularity: Semantic Web documents, resources (e.g., RDF
class or property) and triples (e.g. interesting RDF graph pattern). While this
approach also ranks results according to different query scenarios, it focuses on
graph navigation and offers no entry to the literal space of the LOD Cloud. Also,
the scale of Swoogle is remarkably smaller than the one of LOTUS.

LOTUS bears much resemblance to Sindice [16], a system that allowed search
on Semantic Web documents based on IRIs and keywords that appeared in those
documents. Sindice crawled the network of dereferenceable IRIs and queryable
SPARQL endpoints to gather data documents. The contents of each document
were included in two centralized indices: one for text and one for IRIs. Sindice
also semantically interpreted inverse functional relations, e.g. mapping telephone
numbers onto individuals. Currently, LOTUS does not perform any type of se-
mantic interpretation, although such functionality could be built on top of it.

There are several differences between LOTUS and Sindice. Some of these are
due to the underlying LOD Laundromat architecture and some to the LOTUS
system itself. Firstly, Sindice can relate IRIs and keywords to documents in which
the former occur. LOTUS can relate keywords, IRIs and documents to each other
(in all directions). Secondly, Sindice requires data to adhere to the Linked Data
principles. Specifically, it requires an IRI to either dereference or be queryable
in a SPARQL endpoint. LOTUS is build on top of the LOD Laundromat which
accepts any type of Linked Data, e.g. it allows data entered through Dropbox.
Thirdly, LOTUS allows incorrect datasets to be partially included due to the
cleaning mechanism of the LOD Laundromat. This is an important feature since
empirical observations collected over the LOD Laundromat indicate that at least
70% of crawled data documents contain bugs such as syntax errors. Fourthly,
since Sindice returns a list of online document links as a result, it relies on
the availability of the original data sources. While it has this in common with
search engines for the WWW, it is known that data sources on the Semantic
Web have much lower availability [9]. LOTUS returns document IRIs that can
either be downloaded from their original sources or from a cleaned copy made
available through the LOD Laundromat Web Service. Fifthly, LOTUS operates
on a much larger scale than Sindice did. Sindice allowed 30M IRIs and 45M
literals to be searched while LOTUS allows 3,136M IRIs and 4,335M literals, a
difference in scale of factor 100. Finally, Sindice offered a single algorithm for
resource retrieval, a characteristic it shares with popular WWW search engines,
such as Google5 and Bing6. In such scenario, users have no control over the
retrieval process and often no understanding about how the retrieval algorithms
work, leaving them with no other option than to adapt to the algorithm or look
elsewhere. In the case of LOTUS, the task to adapt is set on the retrieval system

5 https://www.google.com/
6 https://www.bing.com/

5

instead of on the users. Users of LOTUS can benefit from a high flexibility of
retrieval: at the moment we offer four matching and eight ranking algorithms,
resulting in 32 retrieval options for the users to choose from. Our approach is
user-driven and we strive to expand LOTUS to fit as many use cases as possible.

With Sindice being discontinued in 2014, there is hardly any existing attempt
to build a centralized text index over the LOD Cloud or another existing LOD
Cloud collection. Virtuoso’s LOD Cache7 is an entity-centric search interface
which allows RDF to be searched based on free text or on URIs. LOD Cache’s
free text queries are translated to a text search-enriched SPARQL language.
The retrieval algorithm of LOD Cache combines content-based information (by
matching tokens) and relational information (through entity page rank). While
LOD Cache shares many characteristics with LOTUS, the main advantage of
LOTUS lies in the user flexibility to customize the retrieval criteria.

On the other hand, it is notable that the necessity for text-based access to
RDF information has been recognized by most triple stores. Sesame8, ClioPa-
tria9, Apache Jena10 and Virtuoso11 nowadays offer text search functionality
either as a core functionality or an extension.

4 LOTUS

The purpose of LOTUS is to relate unstructured data (natural language text)
to structured data using RDF as paradigm to express such structured data. LO-
TUS has access to an underlying architecture that exposes a large collection of
resource-denoting terms and structured descriptions of those terms, all formu-
lated in RDF. It indexes natural text literals that appear in the object position
of RDF statements and allows the denoted resources to be findable based on
approximate literal matching and, optionally, an associated language tag. The
retrieval of relevant resources consists of two consecutive phases: matching and
ranking. LOTUS currently includes four different matching algorithms and eight
ranking algorithms.

4.1 Described resources

RDF defines a graph-based data model in which resources can be described in
terms of their relations to other resources. The textual labels denoting some of
these resources provide an opening to relate unstructured to structured data.

An RDF statement expresses that a certain relation holds between a pair of
resources. We take a described resource to be any resource that is denoted
by at least one term appearing in the subject position of an RDF statement.

7 http://lod.openlinksw.com/
8 http://rdf4j.org/
9 http://www.swi-prolog.org/web/ClioPatria/whitepaper.html

10 https://jena.apache.org/
11 http://virtuoso.openlinksw.com/

6

LOTUS does not allow every resource in the Semantic Web to be found
through natural language search, as some described resources are not denoted
by a term that appears in the subject position of a triple whose object term
is a textual label. Fortunately, many Semantic Web resources have at least one
textual label linked to them and as the Semantic Web adheres to the Open World
Assumption, resources that have no textual description today may receive one
tomorrow, as everyone is free to add new content.

4.2 RDF Literals

In the context of RDF, textual labels appear mainly as part of RDF literals. We
are specifically interested in literals that contain natural language text. How-
ever, not all RDF literals express – or are intended to express – natural lan-
guage text. For instance, there are datatype IRIs that describe a value space
of date-time points or polygons. Even though each dataset can define its own
datatypes, we observe that the vast majority of RDF literals use RDF or XSD
datatypes. This allows us to circumvent the theoretical limitation of not being
able to enumerate all textual datatypes and focus on the datatypes xsd:string
and rdf:langString [6]. Unfortunately, in practice we find that integers and
dates are also regularly stored under these datatypes. As a simple heuristic filter
LOTUS only considers literals with datatype xsd:string and xsd:langString

that contain at least two consecutive alphabetic Unicode characters.

4.3 Linguistic entry point to the LOD Cloud

LOTUS performs offline approximate string matching. Approximate string match-
ing[13] is an alternative to exact string matching, where a given pattern is
matched to text while still allowing a number of errors. LOTUS preprocesses
text and builds the data index offline, allowing the approximation model to be
efficiently enriched with various precomputed metrics.

LOTUS is meant to fit use cases which require access to the LOD Cloud based
on free text. In the previous subsection we explained which LOD statements will
be indexed in LOTUS, which directly determines the amount of entries which are
findable via LOTUS. Next, we need to ensure the user has enough functionality at
hand in order to retrieve the data that suits her needs. For this purpose, we focus
on two crucial design decisions: matching algorithms and ranking algorithms.

4.4 Matching algorithms

Matching literals can be performed on various levels. Two strings can be com-
pared as full phrases, set of tokens or a set of characters. In LOTUS, we imple-
ment four matching functions to cope with the matching diversity:

M1. Phrase matching: Match a phrase in an object string. Terms in each
result should occur consecutively and in the same order as in the query.

7

M2. Disjunctive token matching: Disjunct lookup of set of tokens occurring
in the string field of an entry. The set of tokens in the query are connected
by logical “OR” operator, expressing that each result should contain at least
one of the queried terms. The order of the tokens between the query and the
results need not coincide.

M3. Conjunctive token matching: Conjunctive lookup of set of tokens oc-
curring in the string field of an entry. The set of tokens are connected by a
logical “AND” operator, which entails that all tokens from a supplied query
must match the result. The order of the tokens between the query and the
results need not coincide.

M4. Conjunctive token matching with character edit distance: Conju-
nctive matching (with logical operator “AND”) of a set of tokens, where a
small Levenshtein-based edit distance on a character level is permitted. This
matching algorithm is intended to account for typos and spelling mistakes.

To bring user even closer to her optimal result set, LOTUS allows further
filtering to be performed on the language of literals. For this purpose, we in-
dex language tags, as explicitly specified by the dataset author or automatically
detected by a language detection library. Following BCP 47 semantics12, a lan-
guage tag can contain secondary tags, such as country codes. In LOTUS, we
focus on the primary language tags which denote the language of a literal and
abstract from the complementary tags, such as country or dialect identifiers.

4.5 Ranking algorithms

Ranking algorithms on the Web of data operate on top of a similarity func-
tion, which can be literal-based or relational [5]13. Literal-based (also called
content-based) similarity functions exclusively compare the textual content of a
query pattern to each matched result. Such comparison can be done on different
granularity of text: we distinguish character-based (Levenshtein similarity, Jaro
similarity, etc.) and token-based (Jaccard, Dice, Overlap, Cosine similarity, etc.)
approaches. The content similarity function can also be information-theoretical,
exploiting the probability distributions extracted from data statistics. Relational
similarity functions complement the literal similarity by taking the underlying
structure of the tree (tree-based similarity) or the graph (graph-based similarity)
into account.

We use this classification of similarity algorithms as a starting point for our
implementation of three literal-based (R1-R3) and five relational functions (R4-
R8) in LOTUS:

R1. Character length normalization: The score of an entry is counter-pro-
portional to the number of characters in its object string.

12 https://tools.ietf.org/html/bcp47
13 The reader is referred to this book for detailed explanation of similarity functions

and references to original publications

8

R2. Practical scoring function: Token-based scoring function, whose score
is a product of three information retrieval metrics: term frequency (TF),
inverse-document frequency (IDF) and length normalization (inverse-propor-
tional to the number of tokens)14

R3. Phrase proximity: Boosts the score of the entries with a low edit distance
to the query phrase.

R4. Terminological richness: Involvement of controlled vocabularies, i.e. clas-
ses and properties, in the original document from which the triple stems
from.

R5. Semantic richness of the document: Mean graph connectedness degree
of the original document.

R6. Recency ranking: The moment in time when the original document was
last modified. Triples from recently updated documents have higher score.

R7. Degree popularity: Total graph connectedness degree (indegree + out-
degree) of the subject resource.

R8. Appearance popularity: Number of documents in which the subject ap-
pears.

5 Implementation

The LOTUS system architecture consists of two components: Index Building
(IB) procedure and Public Interface (PI). The role of the IB component is to
index strings from LOD Laundromat; the role of PI is to expose the indexed data
to users for querying. The two system components are executed sequentially: data
is initially indexed, then it can be queried through the exposed public interface.

5.1 System Architecture

As indexing of big data in the range of billions of RDF statements is expensive,
we perform offline data indexing. Furthermore, as resources and documents re-
peat over multiple (potentially many) statements, we need clever ways to com-
pute and access the metadata on documents and resources. Due to this, we
initially cache the metadata information on documents needed for the ranking
algorithms R4-R6 (Section 4.5). This includes the date when the document was
last modified, its mean graph degree and its terminological richness coefficient;
and has to be obtained once per dataset through Frank [2] or the Lod Laundro-
mat SPARQL endpoint15.

The relational information on resource URIs is trickier to obtain and store,
as the number of resources in the LOD Laundromat is huge and a resource
occurrences are often scattered across many documents, therefore we pre-store
the information needed for ranking algorithms R7 and R8 in RocksDB.

14 This function is the default scoring function in ElasticSearch. Detailed description of
its theoretical basis and implementation is available at https://www.elastic.co/

guide/en/elasticsearch/guide/current/scoring-theory.html
15 http://lodlaundromat.org/sparql/

9

Index Builder Public Interface

Index API

5. Query

8. Retrieve
results

1. query for
LOD datasets
using Frank

4. Index
streams

6. Send user
query to index

7. Return results
to front end

3. Index
URI stats

2. Generate
rankings

Fig. 2. LOTUS System Architecture

After the relational ranking data, we start the indexing process over all data
from LOD Laundromat through a batch loading procedure. This procedure uses
LOD Laundromat’s query interface, Frank (Step 1 in Figure 2), to enumerate
all LOD Laundromat data sets and stream them to a client script. Following the
approach described in Section 4, we consider only the statements that contain a
natural language literal as an object. The client script parses the received RDF
statements and performs a bulk indexing request in ElasticSearch (ES),16 where
the textual index is built (Steps 2, 3 and 4 in Figure 2).

Once the indexing process is finished, we have prepared all the data LOTUS
needs to perform retrieval over the LOD Laundromat collection. The index is
only incrementally updated when new data appears in LOD Laundromat, this
is triggered by an event handler in LOD Laundromat.

Each ElasticSearch entry has the following format:

{

"docid": IRI,

"langtag": STRING,

"predicate": IRI,

"string": STRING,

"subject": IRI,

"length": float,

"docLastModified": int,

"docTermRichness": float,

"docSemRichness": float,

"uriDegree": int,

"uriNumDocs": int

}

The field “string” is preprocessed (“analyzed”) by ElasticSearch at indexing
time, which allows for approximate lookup of the lexical form from the object
literal. The motivation behind analyzing the “string” field comes naturally, as

16 https://www.elastic.co/products/elasticsearch

10

this contains unstructured text and will rarely be queried for exact match. We
also index the language tag (“langtag”) of every triple literal, as described in
Section 4. For every triple, we also store the subject and predicate URIs, as well
as the LOD Laundromat document identifier.

The remaining six fields in our ElasticSearch index structure are collected for
the ranking algorithms in LOTUS: “length” is based on the number of characters
in the “string” field (ranking R1); “docLastModified”, “docTermRichness” and
“docSemRichness” are document-oriented meta numbers (used in rankings R4-
R6); “uriDegree” and“uriDocs” save relational information about the subject
URI of the ElasticSearch entry (ranking algorithms R7 and R8).

5.2 Distributed Architecture

In our implementation, we leverage the distributed features of ElasticSearch and
scale LOTUS horizontally over 5 servers. Each server has 128 GB of RAM, 6
core CPU with 2.40GHz and 3 SSD hard disks with 440 GB of storage each. We
enable data replication to ensure high runtime availability of the system.

5.3 API

Users can access the underlying data through an API. The usual query flow is
described in steps 5-8 of Figure 2. Our NodeJs17 interface to the indexed data
exposes a single query endpoint18. Through this endpoint, the user can supply
the query pattern, indicate the desired matching and ranking algorithms, and
optionally supply additional requirements, such as language tag or number of
results to retrieve. The basic query parameters are19:

• string: A natural language string to match in LOTUS
• match: Choice of a matching algorithm, one of phrase, terms, conjunct, fuzzy-
conjunct
• rank: Choice of a ranking algorithm, one of lengthnorm, psf, proximity, termrich-
ness, semrichness, recency, degree, appearance
• size: Number of best scoring results to be included in the response
• langtag: Two-letter language identifier

LOTUS is also available as a web interface at http://lotus.lodlaundromat.
org/ for simple exploration of the data. Code of the API functions and data from
our experiments can be found on github.20. The code used to create the LOTUS
index is also publicly available21

17 https://nodejs.org
18 http://lotus.lodlaundromat.org/retrieval
19 See http://lotus.lodlaundromat.org/docs for additional parameters and more

detailed information
20 https://github.com/filipdbrsk/LOTUS_Search/
21 https://github.com/filipdbrsk/LOTUS_Indexer/

11

Table 1. Statistics on the indexed data

total # literals encountered 12,380,443,617

#xsd:string literals 6,205,754,116

#xsd:langString literals 2,608,809,608

indexed entries in ES 4,334,672,073

distinct sources in ES 493,181

hours to create the ES index 67

disk space used for the ES index 509.81 GB

in degree entries in RocksDB 1,875,886,294

out degree entries in RocksDB 3,136,272,749

disk space used for the RocksDB index 46.09 MB

6 Performance Statistics and User Scenarios

As the LOTUS framework does not pertain to provide a one-size-fits-all solution,
we present some performance statistics and scenarios in this section. We test LO-
TUS on a series of queries and we see that the different matching and ranking
algorithms implemented in LOTUS come with very different performance char-
acteristics.

6.1 Performance Statistics

Statistics over the indexed data are presented in Table 1. We encountered over
12 billion literals in LOD Laundromat, 8.81 billion of which are defined as a
natural language string (with xsd:string or xsd:langString datatype). According
to our approach, 4.33 billion of all literals (around 35%) express natural language
strings. The initial LOTUS index was created in 67 hours and consumes 509.81
GB of disk space storage. The current index consists of 4.33 billion entries,
stemming from 493,181 distinct datasets.22

In order to give an indication of the performance of LOTUS from a client
perspective we preformed 324,000 text queries. For this we extracted the 6,000
most frequent bigrams, trigrams and quadgrams (18,000 N-grams in total) from
the source of A Semantic Web Primer [1]. Non-alphabetic characters were first
removed and case normalization was applied. For each N-gram we performed a
text query using one of three matchers in combination with one of six rankers.
The results are shown in Figure 3. We observe certain patterns in this Figure.
Matching by disjunctive lookup of terms (M2) is strictly more expensive than
the other two matching algorithms. We also notice that bigrams are more costly
to retrieve than trigrams and quadrams. Finally, we observe that there is no dif-
ference between the response time of the relational rankings which is expected,
because these rank results in the same manner, through sorting pre-stored inte-
gers in a decreasing order. We note that we experienced no problems with the
availability of LOTUS.

22 The number of different source documents in LOTUS is lower than the overall num-
ber of sources in LOD Laundromat, as not every source document contains string
literals.

12

Fig. 3. LOTUS average response times in seconds for bi- tri- and quadgram requests.
The horizontal axis shows 18 combinations of a matcher and a ranker. The matchers
are conjunct (c), phrase (p) and terms (t). The rankers are length normalization (l),
proximity (pr), psf (ps), recency (r), semantic richness (s) and term richness (t).
The bar chart is cumulative per match+rank combination. For instance, the first bar
indicates that the combination of conjunct matching and length normalization takes
0.20 seconds for bigrams, 0.15 seconds for trigrams, 0.15 seconds for quadgrams and 0.5
seconds for all three combined. The slowest query is for bigrams with terms matching
and length normalization, which takes 1.0 seconds on average.

6.2 Usage Scenarios

To demonstrate the flexibility and the potential of the LOTUS framework, we
performed retrieval on the query “graph pattern”. For this query, we chose the
phrase-based matching option and iterated through the different ranking algo-
rithms. The top 8 results obtained with each of the different ranking modes are
presented in Figure 4.

In our results, the literal-based ranking algorithms all put the same result on
the top position, but there is a fair amount of variation in its top 8 results. The
relational similarity scorers perform quite differently and all present entirely new
top 8 results. This allows a user who is, for example, interested in analyzing the
latest changes in a dataset to select the Recency ranking algorithm and retrieve
statements from the most recently updated datasets first. A user who is more
interested in linguistic features of a query can use the length normalization rank-
ing to explore resources which match the query as exact as possible. Use-cases
interested in multiple occurrences of informative phrases would benefit from the
practical scoring function. When working in use cases concerning popularity of
resources, the degree-based rankings can be useful.

Users can also vary the matching dimension. Suppose one is interested to
explore resources with typos or spelling variation: fuzzy conjunctive matching
would be the appropriate matching algorithm to apply.

13

Fig. 4. Results of query “graph pattern” with terms-based matching and different
rankings: 1) Length Normalization, 2) Practical scoring function, 3) Phrase proximity,
4) Semantic richness, 5) Terminological richness, and 6) Recency.

7 Discussion and Conclusions

In this paper, we presented LOTUS, a full-text entry point to the LOD col-
lection in LOD Laundromat. We detailed the specific difficulties in accessing
textual content in the LOD cloud today and the approach taken by LOTUS to
address these. LOTUS allows its users to customize their own retrieval method
by exposing analytically well-understood matching and ranking algorithms.

LOTUS performs retrieval by taking into account both textual similarity
and certain structural properties of the underlying data. In the current version
of LOTUS we focused on context-free23 ranking of results and indicated the
versatility of LOTUS by measuring its performance and showing how the ranking
algorithms affect the search results. A context-dependent ranking mechanism,
could make use of additional context coming from the query in order to re-score
and improve the order of the results. Context-dependent functionality could (to

23 By “context-free”, we mean that the retrieval process can not be directly influenced
by additional restrictions or related information.

14

some extent) be built into LOTUS on a single RDF statement level. However,
graph-wide integration with structured data would require a different approach
and implementation, potentially based on a fulltext-enabled triple store (e.g.
Virtuoso).

Although further optimization is always possible, the current version of LO-
TUS performs indexing and querying in an efficient and scalable manner. This
is largely thanks to the underlying distributed architecture. Future work will
evaluate the precision and recall of LOTUS on concrete applications, such as
Entity Linking.

References

1. Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer.
The MIT Press, 3rd edition edn. (2012)

2. Beek, W., Rietveld, L.: Frank: Algorithmic Access to the LOD Cloud. Proceedings
of the ESWC Developers Workshop 2015 (2015)

3. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: a uniform way of publishing other peoples dirty data. In: ISWC 2014,
pp. 213–228 (2014)

4. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: SPARQL web-
querying infrastructure: Ready for action? In: ISWC 2013 (2013)

5. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of
Data. Morgan & Claypool Publishers (2015)

6. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax
(2014)

7. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: The Semantic Web–ISWC 2005, pp. 156–170.
Springer (2005)

8. Harris, S., Seaborne, A., Prudhommeaux, E.: Sparql 1.1 query language. W3C
Recommendation 21 (2013)

9. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An
Empirical Survey of Linked Data Conformance. Web Semantics: Science, Services
and Agents on the World Wide Web 14, 14–44 (2012)

10. Ilievski, F., Beek, W., van Erp, M., Rietveld, L., Schlobach, S.: Lotus: Linked open
text unleashed. In: COLD workshop, ISWC (2015)

11. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding
Light on the Web of Documents. pp. 1–8. 7th International Conference on Semantic
Systems. ACM (2011)

12. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Transactions of the Association for Computational Lin-
guistics 2, 231–244 (2014)

13. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys (CSUR) 33(1), 31–88 (2001)

14. Prud’hommeaux, E., Buil-Aranda, C.: SPARQL 1.1 Federated Query (2013), http:
//www.w3.org/TR/sparql11-federated-query/

15. Rizzo, G., Troncy, R.: Nerd: a framework for unifying named entity recognition and
disambiguation extraction tools. In: Proceedings of EACL 2012. pp. 73–76 (2012)

16. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Proceedings ISWC’07/ASWC’07. pp. 552–565 (2007)

15

