
LOD Lab: Experiments at LOD Scale

Laurens Rietveld, Wouter Beek, and Stefan Schlobach

Dept. of Computer Science, VU University Amsterdam, NL
{laurens.rietveld,w.g.j.beek,stefan.schlobach}@vu.nl

Abstract. Contemporary Semantic Web research is in the business of
optimizing algorithms for only a handful of datasets such as DBpedia,
BSBM, DBLP and only a few more. This means that current practice
does not generally take the true variety of Linked Data into account.
With hundreds of thousands of datasets out in the world today the re-
sults of Semantic Web evaluations are less generalizable than they should
and — this paper argues — can be. This paper describes LOD Lab: a fun-
damentally different evaluation paradigm that makes algorithmic evalu-
ation against hundreds of thousands of datasets the new norm. LOD Lab
is implemented in terms of the existing LOD Laundromat architecture
combined with the new open-source programming interface Frank that
supports Web-scale evaluations to be run from the command-line. We il-
lustrate the viability of the LOD Lab approach by rerunning experiments
from three recent Semantic Web research publications and expect it will
contribute to improving the quality and reproducibility of experimental
work in the Semantic Web community. We show that simply rerunning
existing experiments within this new evaluation paradigm brings up in-
teresting research questions as to how algorithmic performance relates
to (structural) properties of the data.

1 Introduction

While the exact size of the Web of Data is unknown, there is broad agreement
that the volume of data published according to Linked Open Data (LOD) stan-
dards has to be counted in tens, if not hundreds, of billions of triples by now,
originating from hundreds of thousands of datasets from various domains and
provenance. This amount and broadness of information makes the Web of Data
ideal for testing various types of algorithms and an exciting object of study. As
this is widely recognized it is no surprise that many research papers have been
published in the recent past that use parts of this enormous and rich collection.

Unfortunately, true large-scale evaluation, both in terms of volume and va-
riety have proven to be much harder to come by than one would expect. One of
the main reasons for this is the heterogeneity and user-unfriendliness of the most
wide-spread dissemination strategy for Linked Data today: datadumps. Most re-
searchers and application programmers will recognize the problem of dealing
with various serialization formats and juggling with syntax errors as well as
other data document-specific idiosyncrasies. With the core research being on al-
gorithms and evaluations, data collection, cleaning and harmonization can easily
become a barrier too high to overcome.

To avoid these tedious and painful efforts of integrating hundreds of thou-
sands of heterogeneous datasets most current studies with evaluations focus on
data published through APIs, e.g., using SPARQL. Although this often provides
high-volume datasets for testing, this leads to a strange imbalance in current
practice: of the hundreds of thousands of available datasets [15], only around
260 are available through live query endpoints [6], and of the latter less than
10% dominate the evaluation landscape (see Section 2). As such, question-marks
have to be put on the generalizability and maybe even validity of many of the
results.

Two technological developments of the recent year have changed the sit-
uation significantly, though. First, the LOD Laundromat [3], a platform that
cleans, harmonizes and republishes Linked Data documents, now serves more
than 37 billion triples from over 650,000 data documents in a single, uniform and
standards-compliant format. By (re)publishing very many datasets in exactly the
same, standards-compliant way, the LOD Laundromat infrastructure supports
the evaluation of Semantic Web algorithms on large-scale, heterogeneous and
real-world data. In [15] the LOD Laundromat, which had been serving static
clean data files until that point, was combined with the Linked Data Fragments
(LDF) paradigm [19], thereby offering live query access to its entire collection
of cleaned datasets through Web Services (http://lodlaundromat.org).

While these Web Services provide a good interface for some use cases, e.g.
downloading a specific data document, the large-scale evaluation of a Seman-
tic Web algorithm against thousands of data documents is still relatively time
consuming. This is why we present LOD Lab: an integrated approach towards
running Linked Data evaluations in the large. The LOD Lab approach is imple-
mented by pairing the LOD Laundromat backend with Frank , an open-source1

and simple yet flexible front-end programming interface for conducting large-
scale experiments over heterogeneous data.

Since the LOD Lab approach defaults to running Semantic Web evaluations
against hundreds of thousands of data documents, it introduces a problem that
would have been considered a luxury problem even two years ago: now that
650,000 datasets are available, choosing suitable ones for specific experiments
becomes a non-trivial task. Fortunately, Frank facilitates informed selection by
filtering on domain vocabularies and by using metadata about the scraping and
cleaning process as well as metadata about the structural properties of the data.

This paper makes the following contributions:

– A new way of conducting Linked Data experiments that incorporates both
volume and variety while at the same time allowing the set of considered
data documents to be limited according to domain-specific and/or structural
constraints. The motivation for this novel approach is given in Section 2.

– The introduction of a simple yet versatile programming interface called Frank
for running large-scale Linked Data evaluations from the command-line. Sec-
tion 4 discusses the usage, functionality and implementation of Frank .

1 See https://github.com/LODLaundry/Frank

http://lodlaundromat.org
https://github.com/LODLaundry/Frank

Fig. 1. Overview of datasets used in evaluations of papers accepted in the ISWC 2014
research track. For each dataset the number of articles that use it is shown.

chart

Page 1

D
B

pe
di

a

B
S

B
M

D
B

LP

LU
B

M

Li
nk

ed
 G

eo
 D

at
a

S
em

an
tic

 W
eb

 D
og

 F
oo

d

B
io

2R
D

F

Li
nk

ed
M

D
B

O
pe

n
B

io
m

ed

M
et

al
ex

F
re

eb
as

e

E
ve

nt
se

er

da
ta

.g
ov

ya
go

O
A

E
I

20
13

N
E

LL

Te
xa

s
B

en
ch

m
ar

k

0

2

4

6

8

10

12

14

RDF Datasets

#
 o

f
p

a
p

e
rs

– A demonstration of the viability of the LOD Lab evaluation approach by
rerunning three experiments reported in recent Semantic Web conference
publications, but now by using hundreds of thousands of data documents.
The experiments are described in Section 5.

2 Motivation

Figure 1 gives an overview of the datasets that are used in 20 papers that were
accepted in the ISWC 2014 research track. It only includes papers that evaluate
Linked Datasets, excluding ones that evaluate algorithms on relatively small on-
tologies, non-RDF datasets or streamed data. The figure shows that 17 datasets
are used in total. The number of datasets per article varies between 1 and 6 and
is 2 on average.

The figure shows that most evaluations are conducted on only a handful of
datasets. Even the total collection of datasets that are used in these 20 papers
is not very large. This implies that many papers evaluate against the same
datasets, most often DBpedia. This means that it is generally unclear to what
extent published results will transfer to other datasets, specifically those that
are only very rarely evaluated against. This is the problem of the generalizability
of Semantic Web research results (Problem 1).

Problem 1 By using very few datasets in scientific evaluations, the generaliz-
ability of Semantic Web research results is often unknown.

The reason for Problem 1 is that current evaluation practice does not scale
over heterogeneous data, i.e. we face a problem of variety. The problem is no
longer with the volume of the data since most of the datasets that are never
evaluated against are smaller than some of the datasets that are currently used
in evaluations. While it is sufficiently easy to obtain, load and evaluate one

dataset, contemporary practice shows that it is still difficult to do the same
thing for very many datasets.

One critique that may be leveled against our identification of Problem 1 is
that the most often used datasets are evaluated most often and that evaluation
practice is simply in line with data usefulness or relevance. However, most of the
algorithms and approaches that are evaluated in Semantic Web research target
generic applicability. Specifically, none of the above 20 papers claims to develop
a dataset-specific approach. Moreover, that a dataset is popular does not imply
that results obtained over it are indicative of Linked Data in general and can be
transfered to other datasets. This is specifically true for Linked Data where the
expressiveness of the language allows datasets to differ considerably.

Empirical surveys have documented the restricted state of today’s Semantic
Web deployment.[6,12] Many datasets are only available as data dumps, lack
dereferenceable URIs, cannot be downloaded due to HTTP errors, cannot be
unpacked due to archive errors, or cannot be loaded into Semantic Web tools
due to syntax errors. These idiosyncrasies imply in practice that the human
costs to run experiments usually increases linearly with the number of datasets.
This implies that eager researchers can use one, two, or even six datasets in
their evaluations. There is no way, though, to expect hundreds, thousands or
even hundreds of thousands of datasets in their evaluations. This lack of variety
is due to the fact that the use of every single dataset requires some manual
operations (and often repeatedly very similar operations) in order to overcome
the aforementioned idiosyncrasies (Hypothesis 1).

Hypothesis 1 The main reason why experiments are run on very few datasets
is that for every dataset a certain amount of manual labor is needed.

If Hypothesis 1 is correct, then the solution to Problem 1 is to make the
human cost of using datasets independent from the number of datasets that
is used (Solution 1). The human cost involved in evaluating against datasets
should not only be independent of the number of datasets, but should also be
low. Both these features can be achieved by fully automating the tasks of obtain-
ing, loading, and using datasets. The LOD Laundromat [3] solves this problem
by providing a fully automated infrastructure for disseminating heterogeneous
datasets in a unifom and standardized format. It (re)publishes data as cleaned
datadumps and, more recently, through Web Services. Neither method is suitable
for large-scale evaluation, which requires tools support for fetching, selecting and
application of custom algorithms over the appropriate subset of datasets from
the LOD Laundromat.

Solution 1 Make the human effort needed to obtain, load, and use a collection
of datasets independent from the size of the collection.

While running more evaluations against hundreds of thousands of datasets
will increase the generalizability of Semantic Web approaches, it also creates a
new problem: selectivity (Problem 2). Not every evaluation needs to be, should

be nor can be performed on all the available datasets published through the
LOD Laundromat. So the question arises which datasets to choose.

Problem 2 There are currently no means to select those datasets that are per-
tinent to a given algorithm or approach based on properties of the data.

The ability to select datasets based on properties of the data also relates to
another problem. It is well known, and supported by our results in Section 5
that evaluation outcomes sometimes differ radically for different datasets. Even
though this is an interesting observation in itself, it is more pertinent to inquire
as to why and how performance differs over datasets. This is a topic that has
traditionally not been touched upon very often in the context of Semantic Web
evaluations. LOD Lab will radically simplify future studies in the Semantic Web
community to gain insight in how the performance of Semantic Web approaches
relates to properties of the data (Problem 3).

Problem 3 Current evaluations do not relate evaluation outcomes such as the
performance of the evaluated algorithm or approach to properties of the data.

The solution to Problems 2 and 3 is to allow datasets to be selected based on
various criteria (Solution 2). These criteria should include a dataset’s metadata
(e.g., when it was crawled) and structural properties of the data (e.g., the number
of unique triples it contains).

Solution 2 Allow datasets to be selected based on their properties, including the
dataset metadata, and structural properties of the data.

3 Related Work

3.1 Evaluation Frameworks and Benchmarks

Evaluation frameworks and benchmarks have played an important role in Se-
mantic Web research. Many of the previous efforts focused on evaluation of
storage and query answering, e.g., in the area of RDF processing and SPARQL
query answering, such as the Berlin Benchmark [4], SP2Bench [17], LUBM [9]
and Fedbench [18] or LDBC[5]. Those benchmarks usually provide datasets and
corresponding query sets, in order to level the playing field and allow for a fair
comparisons between tools. Such approaches are a useful source for particu-
lar Linked Data research areas. However, most of these approaches present a
static or even synthetic dataset. LOD Lab differs from the above by allowing
experiments over an extremely high percentage of the real datasets that were
published.

Relevant is the Ontology Alignment Evaluation Initiative [7] (OAEI) which
presents datasets, and gold standards to relate results to, and a framework for
doing so. Most importantly, the OAEI has been using the SEALs2 evaluation
platform for years now. SEALs supports experiments on ontology alignment with
similar functionality as the LOD Lab supports scalability analytic experiments
over multiple various heterogeneous data sources.

2 http://www.seals-project.eu/

http://www.seals-project.eu/

3.2 Dataset Collections

The most common large dataset collection to date is a Linked Data crawl pub-
lished as the Billion Triple Challenge [11] (BTC). The key goal of the Billion
Triple Challenge is ‘to demonstrate the scalability of applications, as well as the
capability to deal with the specifics of data that has been crawled from the public
web’. BTC has indeed proven to facilitate such research, and it has been used
in a wide range of papers. The latest BTC dataset collection was published in
2012, and contains 1.4 billion triples. But lets be frank: where this volume used
to be ‘large’, it has now suffered from inflation and is superseded by several
larger datasets. Additionally, BTC suffers from the same idiosyncrasies found
in other parts of the LOD Cloud: several BTC files contain a sizable number of
duplicates and serialization errors3. Although the BTC has proven successful for
testing algorithms for ‘large’ data, it lacks the meta-data for dealing with variety:
neither dataset characteristics or detailed crawling provenance are available.

Another collection of datasets is LODCache, a Linked Data crawl published
via a SPARQL endpoint, exposing (at the time of writing) 34.5 billion triples.
Though an interesting source of data, the limitations that the endpoint imposes
makes extracting and downloading these datasets difficult. Additionally, no in-
formation is published on the crawl mechanism behind it, and the web service
lacks meta-data of both the crawl and datasets as well. I.e., this service provides
data in a large volume, but lacks the meta-data to select datasets.

3.3 Collecting data on scale

Some resort to crawling Linked Data themselves considering the lack of avail-
able dataset collections. A common tool for this approach is LDspider [13], a
Linked Data crawler which supports a wide range of RDF serialization formats,
and traverses the Linked Data cloud automatically. This approach requires a
large seed list of dataset locations, considering an automatic crawl would need
many dereferenceable URIs to automatically discover new datasets. Therefore,
LDspider is suitable for some, but crawling larger parts of the LOD Cloud both
requires manual effort for curating the seed list, as well as a significant hardware
investment.

4 Implementation

LOD Laundromat provides a wealth of data, including the corresponding meta-
data such as crawling provenance and structural properties of data documents.
The latter are disseminated through a public SPARQL endpoint4. LOD Laundro-
mat data can be accessed by writing a custom script that queries the metadata
endpoint to fetch pointers to the relevant data documents. Those pointers either
give access to the complete data document or to the Linked Data Fragment API

3 See http://lodlaundromat.org/resource/c926d22eb49788382ffc87a5942f7fb3
4 See http://lodlaundromat.org/sparql

http://lodlaundromat.org/resource/c926d22eb49788382ffc87a5942f7fb3
http://lodlaundromat.org/sparql

TPF SPARQLCompressed Data
Dumps

LOD Laundromat

./frank documents ./frank meta./frank statements

My Algorithm

Frank

Resource + namespace
Index

Fig. 2. The implementation architecture for Frank and its dependencies on the LOD
Laundromat Web Services.

for that particular document. The problem with this approach is that a user
needs to be acquainted with the scraping and structural metadata schema used
by LOD Laundromat. Since the latter is quite elaborate, designed with versatil-
ity rather than usability in mind, the Web Services do not implement Solution
1.

We therefore introduce Frank5, a Bash interface that makes it easy to run
evaluations against very large numbers of datasets. By implementing Frank in
Bash it can be used by all except Windows users who do not want to install Cyg-
win6. Since Frank is a plain text file it requires no installation and no inclusion
in a software repository or app store, nor does it depend on a specific program-
ming paradigm. As with any Bash script, in- and output can be straightforwardly
piped from/to other programs and scripts.

Frank implements Solution 1 since it allows evaluations over hundreds of
thousands of data documents to be run by typing a single command (see Section
5 for the commands that were use to scale-up existing experiments). Frank im-
plements Solution 2 by offering mechanisms to select datasets according to their
metadata, and structural properties (see below for the concrete properties that
are supported).

Below, we discuss the three main features of Frank : streamed triple retrieval,
streamed document retrieval, and metadata retrieval.

4.1 Streamed triple retrieval

frank statements allows individual atomic statements or triples to be retrieved.
When called without arguments this streams all 37 billion triples by fetching
and unpacking the Gzipped LOD Laundromat data dumps. If called with the
command-line flags --subject, --predicate, and/or --object, only triples

5 A technical overview of Frank was presented at the ESWC Developers Workshop [2].
6 See https://www.cygwin.com/

https://www.cygwin.com/

that contain the specified subject-, predicate- and object-term are returned.
These three flags mimic the expressivity of the Linked Data Fragment (LDF) [19]
Web API. They are expressively equivalent to SPARQL queries with a single-line
Basic Graph Pattern (BGP) [10]. LDF supports streamed processing though a
self-descriptive API that uses pagination in order to serve large results in smaller
chunks. If called with a subject, predicate and/or object flag, frank statements

interfaces with the LOD Laundromat index7 which contains a mapping between
all LOD Laundromat resources and documents. For these documents, Frank con-
nects with the Linked Data Fragments API for, handling the LDF pagination
settings in order to ensure a constant stream of triples. The LDF API is able to
answer triple pattern requests efficiently by using the Header Dictionary Triples8

(HDT) technology. HDT is a binary, compressed and indexed serialization for-
mat that facilitates efficient browsing and querying of RDF data at the level of
single-line BGPs. HDT files are automatically generated for all data documents
that are disseminated by the LOD Laundromat backend.

4.2 Streamed document retrieval

frank documents allows individual documents to be retrieved. The command
interfaces with the SPARQL endpoint and LOD Laundromat index in order to
find data documents that satisfy the given properties.

The following selection mechanisms are supported by frank documents:

– Flags --minTriples and --maxTriples filter data documents based on the
number of unique triples they contain.

– Filtering on the average minimum and maximum degree (as well as in and
out degree), e.g. --minAvgDegree

– Flag --namespace connects to the LOD Laundromat namespace index, and
only returns documents using that particular namespace. This allows for
coarse selectivity of domains. For instance datasets that are possibly relevant
to the bioinformatics domain can be filtered based on the drugbank and
chebi namespaces. The namespace flag accepts both full URIs and de-facto
RDF prefixes9 that denote namespaces.

– Flag --sparql allows an arbitrarily complex SPARQL query to be evaluated
against the LOD Laundromat backend. While not very user-friendly, this flag
allows less often used selection criteria to be applied. Since we log SPARQL
queries at the backend, we are able to add flags to Frank based on often
requested queries.

Data document are identified in the following two ways:

1. The URI from which the data document, cleaned by the LOD Laundromat,
can be downloaded (--downloadUri). These clean data documents are dis-
seminated by the LOD Laundromat as Gzipped N-Triples or N-Quads. The

7 See http://index.lodlaundromat.org
8 See http://www.rdfhdt.org/
9 Prefixes are taken from http://prefix.cc.

http://index.lodlaundromat.org
http://www.rdfhdt.org/
http://prefix.cc

statements are unique within a document so no bookkeeping with respect
to duplicate occurrences needs to be applied. Statements are returned ac-
cording to their lexicographic order. These statements can be processed on
a one-by-one basis which allows for streamed processing by Frank .

2. The Semantic Web resource identifier assigned by LOD Laundromat for this
particular document (--resourceUri).

When neither --downloadUri nor --resourceUri are passed as arguments
Frank returns both separated by a white-space.

The streaming nature of Frank enables combinations of streamed triple and
document retrieval. The following command returns a stream of documents with
an average out-degree of 15 that contain at least 100 unique RDF properties.
The stream consists of N-Quads where every triple ends in a newline and within-
triple newlines are escape according to the N-Quads standard. The graph name
of each quadruple is the LOD Laundromat document identifier.

$./frank documents \

--resourceUri \

--minAvgOutDegree 15 \

--sparql "?doc llm:metrics/llm:distinctProperties ?numProp.

(FILTER ?numProp > 100)"

| ./frank statements --showGraph

4.3 Metadata

frank meta retrieves the metadata description of a given data document. It
interfaces with the SPARQL endpoint of LOD Laundromat and returns N-
Triples that contain provenance and structural properties for that particular
document10.

These structural properties include:

– VoID description properties such as the number of triples, entities, and the
number of used properties and classes

– Additional properties not included in VoID directly, such as the number of
defined properties and classes, and the number of literals, IRIs, and blank
nodes.

– Network properties such as degree, in degree and out degree. For each of
these properties we present descriptive statistics including the minimum,
maximum, median, mean and standard deviation.

– Details on the IRI and literal lengths, with similar descriptive statistics.

Other than such structural properties, the LOD Laundromat metadata in-
cludes crawling provenance as well, such as:

– A reference to the original download location of the document

10 We present this metadata collection in more detail in [14]

– Warnings and errors encountered when fetching and cleaning the document
– Number of duplicate triples
– Temporal information such as the last-modified date of the original file, or

the cleaning date of a document.
– Other low-level information on the original file, such as the serialization

format, its size, or its line count

5 Evaluation

To illustrate the use of the LOD Lab for evaluation purposes, we re-evaluate
parts of three previously published papers. A paper presenting an efficient in-
memory RDF dictionary (Section 5.1), a paper compressing RDF in a binary
representations (Section 5.2), and a paper exploring Linked Data best practices
(Section 5.3). We do not aim to completely reproduce these papers, as we merely
intend to illustrate LOD Lab and how Frank can be used by others.

Below we discuss these papers in detail and highlight the parts of their ex-
periment we reproduce. For these experiments we illustrate how we used Frank ,
and we present the reevaluated results. The source-code of these evaluations are
publicly available11

5.1 Paper 1: RDF Vault

‘A Compact In-Memory Dictionary for RDF data‘ [1] is a recent paper from
the 2015 Extended Semantic Web Conference, which presents RDF Vault. RDF
Vault is an in-memory dictionary, which takes advantage of string similarities
of IRIs, as many IRIs share the same prefix. The authors take inspiration from
conventional Tries (tree structures for storing data), and optimize this method
for RDF data.

The authors measure the average encoding time per entity (time it takes to
store a string in RDF Vault), average decoding time per entity (time it takes to
get this string), and the memory use. Additionally, the authors make a distinc-
tion between these measurements for literals and URIs, considering literals often
lack a common prefix. In the original paper, RDF vault is compared against sev-
eral baselines (e.g. a classical in-memory dictionary), and evaluated against the
following 4 datasets: Freebase, the Billion Triple Challenge datasets, DBpedia
and BioPortal.

We use Frank to re-evaluate the encoding time of RDF Vault (using the orig-
inal implementation) against a larger number of datasets: for each document,
we measure the average encoding time of literals, IRIs, and both combined. In
order to compare these results meaningfully with the results from the original
paper, we group the documents by number of entities, and present the encod-
ing/decoding time for each group.

In figure 3 we present the original RDF vault results on the left side, and the
results obtained via Frank on the right side. We collected the results from frank

11 See https://github.com/LaurensRietveld/FrankEvaluations

https://github.com/LaurensRietveld/FrankEvaluations

orig paper

Page 1

BioPortal DBpedia BTC 2014 Freebase
1

10

100

1000

10000

100000

E
nc

od
e

tim
e

pe
r

en
tit

y
(n

s,
 lo

g)

(a) Results from [1]

new

Page 1

[,1k) [1k,100k) [100k, 1m) [1m,50m) [50m,

IRI

Literals

All

Entities

(b) LOD Lab results

Fig. 3. Average encoding time per entity (ns)

by piping all documents to the evaluation script as follows, where
./rdfVaultEncodeDocument.sh is a Bash script that reads the Frank docu-
ments from the standard input, and applies RDF Vault for each of these docu-
ments.

$./frank documents --downloadUri | ./rdfVaultEncodeDocument.sh

Both figures show the average encoding time of IRIs, Literals, and both
combined. Our results are based on 100,000 LOD Laundromat documents12,
where we grouped documents in buckets by the number of encoded entities. The
original results differ between datasets: the average encoding time of IRIs in
BioPortal are 1/3 of the DBpedia encoding times. Our results show the influence
of the dataset size on the encoding times (particularly considering the y log
scale). Smaller datasets of less than 1,000 entities may take up to 30.000 nano
seconds per entity. Similarly, datasets with between 1,000 and 100,000 entities
show longer encoding times than the original paper as well. For dataset sizes
which correspond to the original paper, the results are similar. The re-evaluation
of these results clearly show the effect of the dataset size on encoding times. That
effect was not investigated in the original paper, because the experiments were
only done on a handful of datasets. As we have shown, Frank trivially allows
to run the original experiments on hundreds of thousands datasets, immediately
giving an insight in the unexpected non-monotonic relation between dataset size
and encoding time per entity.

Other structural dimensions might be relevant for this paper as well, such as
the number of literals in a dataset or the standard deviation of URI or literal
lengths. All these dimension are accessible using the LOD Laundromat meta-
data and the Frank interface. E.g., to run the vault experiments for dataset with
a high standard deviation in URI lengths, run:

$./frank documents \

--downloadUri \

--query "{?doc llm:metrics/llm:IRILength/llm:std ?std .

12 Due to the runtime of RDF Vault and time constraints we were unable to re-evaluate
this on the complete LOD Laundromat set

FILTER(?std > 50)}"

| ./rdfVaultEncodeDocument.sh

5.2 Paper 2: RDF HDT

‘Binary RDF Representation for Publication and Exchange (HDT)’ [8] is an
often cited paper (56 at the time of writing) from the journal of Web Semantics.
HDT is a compact binary RDF representation which partitions RDF datasets
in three components: Header information, a dictionary, and the actual triples
structure. The important gain of HDT is that the HDT files are queryable in
their compressed form using simple SPARQL triple patterns.

In the original paper, the performance of HDT is evaluated by measuring
the compression ratio of HDT compared to other compression algorithms (e.g.
Gzip and Bzip2), the compression time, and by measuring the number of entries
in the dictionary compared to the total number of triples. The datasets used in
this evaluation are Geonames, Wikipedia, DBTune, Uniprot and DBpedia-en. A
part of the evaluation is evaluated against the 400 largest datasets in the Billion
Triple Challenge (BTC). This is a fairly complete evaluation, considering the
number of datasets, and the use of BTC datasets.

The results we re-evaluate13 are the compression ratios presented in [8] which
were evaluated on Uniprot datasets from different sizes (1, 5, 10, 20, 30 and 40
million triples). We re-evaluate this particular research result using Frank by
finding dataset of similar sizes (± 10%) and by measuring the compression ratio.

The LOD Laundromat documents are fetched using Frank and filtered to
match the Uniprot dataset sizes. E.g., to select LOD Laundromat documents
matching the 1 million Uniprot dataset, Frank searches for documents of 1 mil-
lion with a deviation of 10%, and streams these document to a shell script which
downloads and compresses these documents using HDT.

$./frank documents --minTriples 950000 --maxTriples 1050000

| ./hdtCompressDocument.sh

Table 1 shows the compression ratio for Uniprot datasets on the left side, and
the average compression ratio for LOD Laundromat documents on the right side.
There is a large difference between Uniprot and the LOD Laundromat datasets
in both compression ratio and average document size. Another interesting ob-
servation is the high average compression ratio of LOD Laundromat documents
around 1 million, compared to other LOD Laundromat documents.

To better understand such differences, we use Frank to evaluate RDF HDT
along another dimension: the average degree of documents. We did so by search-
ing for three buckets of datasets. Those with a low (1-5), medium (5-10) and
high (10+) average degree, all with at least 1 million triples:

$./frank documents --minAvgDegree 5 --maxAvgDegree 10 --minTriples 1000000

| ./hdtCompressDocument.sh

13 We re-evaluated the latest HDT version accessible at https://github.com/rdfhdt/

https://github.com/rdfhdt/

Original: Uniprot LOD Lab

Triples

(millions)
docs

Size

(MB)

Compression

Ratio
docs

Avg. Size

(MB)

Avg Compression

Ratio

1 1 89.07 3.73% 179 183.31 11.23%

5 1 444.71 3.48% 74 799.98 4.99%

10 1 893.39 3.27% 50 1,642.60 5.43%

20 1 1,790.41 3.31% 17 3,328.57 4.15%

30 1 2,680.51 3.27% 19 4,880.26 5.09%

40 1 3,574.59 3.26% 8 6,586.95 7.25%

Table 1. HDT Compression rates: Results from [8] on Uniprot (left side) vs. results
from Frank (right side)

Avg. Degree # docs
Compression

Ratio

1-5 92 21.68%

5-10 80 6.67%

10-∞ 99 4.85%

Table 2. HDT Compression rates grouped by avg degree

The results (See Table 2) show that an increase in degree of a document comes
with a decrease in compression ratio.

These experimentation on a large numbers of datasets across a large number
of dimensions is made easy by Frank , and allows researchers to both tune their
algorithms to different document characteristics, as well as better understand
their algorithms behavior under different conditions.

5.3 Paper 3: Linked Data Best Practices

Other than using the LOD Lab for empirical evaluations, we show how it can be
used for explorative and observational papers as well. The most cited paper of the
International Semantic Web Conference 2014 is ‘Adoption of the Linked Data
Best Practices in Different Topical Domains‘ [16], where the authors analyze
Linked Data best practices by crawling (using LDspider [13]) the LOD Cloud.
Seed items for this crawl come from public catalogs, the Billion Triple Challenge,
and datasets advertised on public LOD mailing lists. The crawl included 900,129
documents (URIs that were dereferenced) and 8,038,396 resources. Documents
are grouped to 1014 datasets using information from catalogs, or Pay-Level-
Domain (PLD) otherwise. The paper present a large and diverse set of statistics,
including:

1. The number of resource per document

2. Dataset grouped by topical domain. These domains are fetched from online
catalogs if any, and manually annotated otherwise

3. Indegree and outdegree of datasets
4. The links occurring between datasets, and the type of predicates used for

linking
5. The use of vocabularies in datasets

The crawling mechanism behind these statistics strongly relies on derefer-
enceable URIs. As a consequence, there is a strong link between a crawled docu-
ment and the URI it is crawled from: we know which URI is the ‘authority’ for a
document. This offers opportunities for e.g. grouping the datasets by PLD and
finding links between datasets. This crawling mechanism differs from the LOD
Laundromat, which mostly consists of (often compressed) data dumps14. As a
consequence, in LOD Laundromat, the URL http://data.dws.informatik.

uni-mannheim.de/dbpedia/2014/en/ (the official DBpedia download location)
does not directly match with http://dbpedia.org/resource/Amsterdam, mak-
ing it difficult to know the authoritativeness of the download dump URI. I.e.,
the LOD Laundromat crawls many more documents and triples (including those
not accessible as dereferenceable URI), but lacks information on the authori-
tativeness of URIs. Vice versa, the used crawl in [16] crawls only a fraction of
the LOD Laundromat size, but retains the notion of authority. As a result, the
original paper has statistics on DBpedia as a whole, where the LOD Lab results
are separate for each independent DBpedia data dump.

These differences in features between both crawling mechanisms restricts the
ability of Frank to reproduce all of the statistics from [16]. However, we chose
to focus on re-evaluating the used vocabularies on the LOD Cloud, which does
not suffer from these difference in crawling mechanisms. Instead, Frank offers a
more complete perspective on the use of vocabularies, considering the number
of crawled triples.

We reproduced this experiment by simply streaming all the LOD Laundromat
download URIs to a script counting the namespaces15:

$./frank documents --downloadUri | ./countNamespacesForDocument.sh

Table 3 shows the 10 most frequent occurring namespaces in documents. In
the original paper these counts are grouped by dataset (i.e. groups of documents),
where we present these statistics on a document level alone.

This table shows striking differences: where the time namespace is used in
68.20% of the LOD Laundromat documents, it does not occur in the top 10 list
of [16]. Similarly, the cube namespace occurs in 23.92% of LOD Laundromat
documents, and is missing from the original top 10 list as well.

The crawling method behind both approaches, and the method used by [16]
to group documents as datasets can explain these discrepancies. Therefore, we
do not claim to have the right answer for these kind of statistics. Instead, we

14 See [3] for more information
15 Using the namespace list of http://prefix.cc, similar to the original paper

http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/
http://dbpedia.org/resource/Amsterdam
http://prefix.cc

Original [16] LOD Lab

Prefix #datasets % datasets Prefix #docs % docs

rdf 996 98.22% rdf 639,575 98.40%

rdfs 736 72.58% time 443,222 68.19%

foaf 701 69.13% cube 155,460 23.92%

dcterm 568 56.01% sdmxdim 154,940 23.84%

owl 370 36.49% worldbank 147,362 22.67%

wgs84 254 25.05% interval 69,270 10.66%

sioc 179 17.65% rdfs 30,422 4.68%

admin 157 15.48% dcterms 26,368 4.06%

skos 143 14.11% foaf 20,468 3.15%

void 137 13.51% dc 14,423 2.22%

Table 3. Top 10 namespaces used in documents

show that the LOD Lab approach allows for large scale comparisons for these
kinds of Linked Data observational studies.

6 Conclusion

The distributed nature of the Semantic Web, the wide range of serialization
formats, and the idiosyncrasies found in datasets, make it difficult to use the
Semantic Web as a true large-scale evaluation platform. As a consequence, most
research papers are only evaluated against a handful of datasets.

In this paper we presented LOD Lab, a new way of conducting Linked
Data experiments that incorporates both volume and variety while at the same
time allowing the set of considered data documents to be limited according to
domain-specific and/or structural constraints. This is achieved by using the LOD
Laundromat backend together with the simple yet versatile programming inter-
face Frank that allows large-scale Linked Data evaluations to be run from the
command-line.

The viability of the LOD Lab approach was demonstrated by scaling up three
experiments reported in recent Semantic Web conference publications. These
re-evaluations show that evaluations over Linked Data can now be performed
without the human effort having to increase linearly in terms of the number of
datasets involved. In addition, the re-evaluations show that the combination of
volume, variety and selectivity facilitates a more detailed analysis of Semantic
Web algorithms and approaches by relating evaluation outcomes to properties
of the data.

References

1. Bazoobandi, H.R., de Rooij, S., Urbani, J., et al.: A compact in-memory dictionary
for rdf data. In: The Extended Semantic Web Conference – ESWC. Springer (2015)

2. Beek, W., Rietveld, L.: Frank: The lod cloud at your fingertips. In: Developers
Workshop , ESWC (2015)

3. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
laundromat: A uniform way of publishing other people’s dirty data. In: The Se-
mantic Web–ISWC 2014, pp. 213–228. Springer (2014)

4. Bizer, C., Schultz, A.: The berlin sparql benchmark (2009)
5. Boncz, P., Fundulaki, I., Gubichev, A., Larriba-Pey, J., Neumann, T.: The linked

data benchmark council project. Datenbank-Spektrum 13(2), 121–129 (2013)
6. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: SPARQL web-

querying infrastructure: Ready for action? In: The Semantic Web–ISWC 2013.
Springer (2013)

7. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontol-
ogy alignment evaluation initiative: Six years of experience. In: Journal on data
semantics XV, pp. 158–192. Springer (2011)

8. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary rdf representation for publication and exchange (hdt). Web Semantics:
Science, Services and Agents on the World Wide Web 19, 22–41 (2013)

9. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2), 158–
182 (2005)

10. Harris, S., Seaborne, A.: SPARQL 1.1 query language (March 2013)
11. Harth, A.: Billion Triples Challenge data set. Downloaded from

http://km.aifb.kit.edu/projects/btc-2012/ (2012)
12. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An

Empirical Survey of Linked Data Conformance. Web Semantics: Science, Services
and Agents on the World Wide Web 14, 14–44 (2012)

13. Isele, R., Umbrich, J., Bizer, C., Harth, A.: Ldspider: An open-source crawling
framework for the web of linked data. In: 9th International Semantic Web Confer-
ence (ISWC2010). Citeseer (2010)

14. Rietveld, L., Beek, W., Schlobach, S.: LOD in a box: The C-LOD meta-
dataset (Under submission), http://www.semantic-web-journal.net/system/

files/swj868.pdf
15. Rietveld, L., Verborgh, R., Beek, W., Sande, M.V., Schlobach, S.: Linked data as

a service: The Semantic Web redeployed. In: The Extended Semantic Web Confer-
ence – ESWC. Springer (2015)

16. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: The Semantic Web–ISWC 2014, pp.
245–260. Springer (2014)

17. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp 2 bench: A sparql perfor-
mance benchmark, icde. Shanghai, China (2009)

18. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fedbench:
A benchmark suite for federated semantic data query processing. In: The Semantic
Web–ISWC 2011, pp. 585–600. Springer (2011)

19. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Query-
ing datasets on the web with high availability. In: The Semantic Web–ISWC 2014,
pp. 180–196. Springer (2014)

http://www.semantic-web-journal.net/system/files/swj868.pdf
http://www.semantic-web-journal.net/system/files/swj868.pdf

	 LOD Lab: Experiments at LOD Scale

