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Abstract. The Linked Data cloud has grown to become the largest
knowledge base ever constructed. Its size is now turning into a major bot-
tleneck for many applications. In order to facilitate access to this struc-
tured information, this paper proposes an automatic sampling method
targeted at maximizing answer coverage for applications using SPARQL
querying. The approach presented in this paper is novel: no similar RDF
sampling approach exist. Additionally, the concept of creating a sample
aimed at maximizing SPARQL answer coverage, is unique. We empiri-
cally show that the relevance of triples for sampling (a semantic notion)
is in�uenced by the topology of the graph (purely structural), and can be
determined without prior knowledge of the queries. Experiments show a
signi�cantly higher recall of topology based sampling methods over ran-
dom and naive baseline approaches (e.g. up to 90% for Open-BioMed at
a sample size of 6%).
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1 Introduction

The Linked Data cloud grows every year [4,10] and has turned the Web of Data
into a knowledge base of unprecedented size and complexity. This poses problems
with respect to the scalability of our current infrastructure and tools. Datasets
such as DBPedia (459M triples) and Linked Geo Data (289M triples) are central
to many Linked Data applications. Local use of such large datasets requires
investments in powerful hardware, and cloud-based hosting is not free either.
These costs are avoidable if we know which part of the dataset is needed for
our application, i.e. if only we could pick the data a priori that is actually being
used, or required to solve a particular task. Experience in the OpenPHACTS and
Data2Semantics projects1 shows that for the purposes of prototyping, demoing

? This work was supported by the Dutch national program COMMIT, and carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

1 See http://openphacts.org and http://www.data2semantics.org, respectively.
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or testing, developers and users are content with relevant subsets of the data.
They accept the possibility of incomplete results that comes with it. A locally
available subset is also useful when the connection to a cloud based server is
inaccessible (something which happens frequently [10]). Since more users can
host subsets of very large data locally, this will lift some of the burden for (often
non-commercial) Linked Data providers, while links to the remaining parts on
external servers remain in place.

Our analysis of �ve large datasets (>50M triples) shows that for a realistic set
of queries, at most 2% of the dataset is actually used (see the `coverage' column
in Table 1): a clear opportunity for pruning RDF datasets to more manageable
sizes.2 Unfortunately, this set of queries is not always known: queries are not
logged or logs are not available because of privacy or property rights issues. And
even if a query set is available, it may not be representative or suitable, e.g. it
contains queries that return the entire dataset.

We de�ne relevant sampling as the task of �nding those parts of an RDF
graph that maximize a task-speci�c relevance function while minimizing size.
For our use case, this relevance function relies on semantics: we try to �nd
the smallest part of the data that entails as many of the original answers to
typical SPARQL queries as possible. This paper investigates whether we can use
structural properties of RDF graphs to predict the relevance of triples for typical
queries.

To evaluate this approach, we represent �typical use� by means of a large num-
ber of SPARQL queries �red against datasets of various size and domain: DB-
pedia 3.9 [3], Linked Geo Data [5], MetaLex [19], Open-BioMed3, Bio2RDF [8]
and Semantic Web Dog Food [24] (see Table 1). The queries were obtained from
server logs of the triple stores hosting the datasets and range between 800 and
5000 queries for each dataset. Given these datasets and query logs, we then 1)
rewrite RDF graphs into directed unlabeled graphs, 2) analyze the topology of
these graphs using standard network analysis methods, 3) assign the derived
weights to triples, and 4) generate samples for every percentile of the size of the
original graph. These steps were implemented as a scalable sampling pipeline,
called SampLD.

Our results show that the topology of the hypergraph alone helps to predict
the relevance of triples for typical use in SPARQL queries. In other words, we
show in this paper that without prior knowledge of the queries to be answered,
we can determine to a surprisingly high degree which triples in the dataset
can safely be ignored and which cannot. As a result, we are able to achieve a
recall of up to .96 with a sample size as small as 6%, using only the structural
properties of the graph. This means that we can use purely structural properties
of a knowledge base as proxy for a semantic notion of relevance.

2 The �gure of 2% depends on the assumption that the part of the graph touched by
queries is relatively stable over time. We intend to investigate this further in future
work.

3 See http://www.open-biomed.org.uk/
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This paper is structured as follows. We �rst discuss related work, followed
by the problem de�nition and a description of our approach. The fourth section
discusses the experiment setup and evaluation, after which we present the results.
Finally we discuss our conclusions.

2 Related Work

Other than naive random sampling [30], extracting relevant parts of Linked Data
graphs has not been done before. However, there are a number of related ap-
proaches that deserve mentioning: relevance ranking for Linked Data, generating
SPARQL benchmark queries, graph rewriting techniques, and non-deterministic
network sampling techniques.

Network Sampling [23] evaluates several non-deterministic methods for sam-
pling networks: random node selection, random edge selection, and exploration
techniques such as random walk. Quality of the samples is measured as the struc-
tural similarity of the sample with respect to the original network. This di�ers
from our notion of quality, as we do not strive at creating a structurally repre-
sentative sample, but rather optimize for the ability to answer the same queries.
Nevertheless, the sampling methods discussed by [23] are interesting baselines
for our approach; we use the random edge sampling method in our evaluation
(See Section 5).

Relevance Ranking Existing work on Linked Data relevance ranking fo-
cuses on determining the relevance of individual triples for answering a single
query [2,7,12,20,22]. Graph summaries, such as in [11], are collections of impor-
tant RDF resources that may be presented to users to assist them in formulating
SPARQL queries, e.g. by providing context-dependent auto completion services.
However, summarization does not produce a list of triples ordered by relevance.

TRank [32] ranks RDF entity types by exploiting type hierarchies. However,
this algorithm still ranks entities and not triples. In contrast, TripleRank [12]
uses 3d tensor decomposition to model and rank triples in RDF graphs. It takes
knowledge about di�erent link types into account, and can be seen as a multi-
model counterpart to web authority ranking with HITS. TripleRank uses the
rankings to drive a faceted browser. Because of the expressiveness of a tensor
decomposition, TripleRank does not scale very well, and [12] only evaluate small
graphs of maximally 160K triples. Lastly, TripleRank prunes predicates that
dominate the dataset, an understandable design decision when developing a user
facing application, but it has an adverse e�ect on the quality of samples as
prominent predicates in the data are likely to be used in queries as well.

ObjectRank [7] is an adaptation of PageRank that implements a form of
link semantics where every type of edge is represented by a particular weight.
This approach cannot be applied in cases where these weights are not known
beforehand. SemRank [2] ranks relations and paths based on search results. This
approach can �lter results based on earlier results, but it is not applicable to a



priori estimation of the relevancy of the triples in a dataset. Finally, stream-
based approaches such as [15] derive the schema. This approach is not suitable
for retrieving the most relevant factual data either, regarding a set of queries.

Concluding, existing approaches on ranking RDF data either require prior
knowledge such as query sets, a-priori assignments of weights, produce samples
that may miss important triples, or focus on resources rather than triples.

Synthetic Queries SPLODGE [14] is a benchmark query generator for ar-
bitrary, real-world RDF datasets. Queries are generated based on features of
the RDF dataset. SPLODGE-based queries would allow us to run the sam-
pling pipeline on many more datasets, because we would not be restricted by
the requirement of having a dataset plus corresponding query logs. However,
benchmark queries do not necessarily resemble actual queries, since they are
meant to test the performance of Linked Data storage systems [1]. Further-
more, SPLODGE introduces a dependency between the dataset features and
the queries it generates, that may not exist for user queries.4

RDF Graph Rewriting RDF graphs can be turned into networks that are
built around a particular property, e.g. the social aspects of co-authorship, by
extracting that information from the RDF data [33]. Edge labels can sometimes
be ignored when they are not directly needed, e.g. to determine the context of
a resource [20], or when searching for paths connecting two resources [17].

The networks generated by these rewriting approaches leave out contextual
information that may be critical to assess the relevance of triples. The triples
〈: bob, : hasAge, “50”〉 and 〈: anna, : hasWeight, “50”〉 share the same literal
("50"), but it respectively denotes an age and a weight. Finally, predicates play
an important role in our notion of relevance. They are crucial for answering
SPARQL queries, which suggests that they should carry as much weight as
subjects and objects in our selection methodology. Therefore, our approach uses
di�erent strategies to remove the edge labels, while still keeping the context of
the triples.

In [18], RDF graphs are rewritten to a bipartite network consisting of sub-
jects, objects and predicates, with a separate statement node connecting the
three. This method preserves the role of predicates, but increases the number of
edges and nodes up to a threefold, making it di�cult to scale. Additionally, the
resulting graph is no longer directed, disqualifying analysis techniques that take
this into account.

3 Context

In the previous section, we presented related work on RDF ranking and net-
work sampling, and showed that sampling for RDF graphs has not been done

4 In an earlier stage of this work, we ran experiments against a synthetic data and
query set generated by SP2Bench [29]. The results were di�erent from any of the
datasets we review here, as the structural properties of the dataset were quite dif-
ferent, and the SPARQL queries (tailored to benchmarking triple-stores) are incom-
parable to regular queries as well.



before. This section introduces a very generic framework for such RDF sampling.
We elaborate on di�erent RDF sampling scenarios, and present the particular
sampling scenario addressed by this paper.

3.1 De�nitions

A `sample' is just an arbitrary subset of a graph, so we introduce a notion of
relevance to determine whether a sample is a suitable replacement of the original
graph. Relevance is determined by a relevance function that varies from applica-
tion to application. The following de�nitions use the same SPARQL de�nitions
as presented in [25].

De�nition 1. An RDF graph G is a set of triples. A sample G′ of G is a proper

subset of G. A sample is relevant w.r.t. a relevance function F (G′,G) if it max-
imizes F while minimizing its size.

Finding a relevant sample is a multi-objective optimization problem: selecting a
sample small enough, while still achieving a recall which is high enough. More-
over, there is no sample that �ts all tasks and problems, and for each application
scenario a speci�c relevance function has to be de�ned. In this paper, relevance
is de�ned in terms of the coverage of answers with respect to SPARQL queries.

De�nition 2. The relevance function for SPARQL querying Fs(G′,G) is the

probability that the solution µ to an arbitrary SPARQL query Q is also a solution

to Q w.r.t. G′.

As usual, all elements T ∈ G are triples of the form (s, p, o) ∈ I × I × (I ∪L),
where s is called the subject, p the predicate, and o the object of T . I denotes
all IRIs, where L denotes all literals. For this paper, we ignore blank nodes.

In other words, a relevant sample of a RDF graph is a smallest subset of
the graph, on the basis of which the largest possible number of answers that
can be found with respect to the original RDF graph. As common in multi-
objective optimization problems, the solution cannot be expected to be a single
best sample, but a set of samples of increasing size.

3.2 Problem Description

The next step is to determine the method by which a sample is made. As
brie�y discussed in the introduction, this method is restricted mostly by the
pre-existence of a suitable set of queries. To what extent can these queries be
used to inform the sampling procedure? As we have seen in the related work,
sampling without prior knowledge � uninformed sampling � is currently an un-
solved problem. And in fact, even if we do have prior knowledge, a method that
does not rely on prior knowledge is still useful.

With informed sampling, there is a complete picture of what queries to ex-
pect: we know exactly which queries we want to have answered, and we con-
sequently know which part of the dataset is required to answer these queries.
Given the size of Linked Data sets, this part can still be too large to handle.



Dataset #Tripl.
Avg.
Deg.

Tripl. w/
literals

#Q Coverage
Q w/
literals

#Triple patt.
per query
(avg / stdev)

DBpedia 3.9 459M 5.78 25.44% 1640 0.003% 61.6% 1.07 / 0.40
LGD 289M 4.06 46.35% 891 1.917% 70.7% 1.07 / 0.27
MetaLex 204M 4.24 12.40% 4933 0.016% 1.1% 2.02 / 0.21
Open-BioMed 79M 3.66 45.37% 931 0.011% 3.1% 1.44 / 3.72
Bio2RDF/KEGG 50M 6.20 35.06% 1297 2.013% 99.8% 1.00 / 0.00
SWDF 240K 5.19 34.87% 193 39.438% 62.4% 1.80 / 1.50

Table 1: Data and query set statistics

This indicates a need for heuristics or uninformed methods to reduce the size
even more.

If we have an incomplete notion of what queries to expect, e.g. we only know
part of the queries or only know their structure or features, we could still use
this information to create a semi-informed selection of the data. This requires a
deeper understanding of what features of queries determine relevance, how these
relate to the dataset, and what sampling method is the best �t.

In this paper we focus on a comparison of methods for uninformed sampling,
the results of which can be used to augment scenarios where more information
is available. For instance, a comparison of query features as studied in [26,28],
combined with performance of our uninformed sampling methods, could form
the basis of a system for semi-informed sampling.

To reiterate, our hypothesis is that we can use standard network metrics on
RDF graphs as useful proxies for the relevance function. To test this hypothesis,
we implemented a scalable sampling pipeline, SampLD, that can run several
network metrics to select the top ranked triples from RDF datasets and evaluate
the quality of those samples by their capability to answer real SPARQL queries.

3.3 Datasets

We evaluate the quality of our sampling methods for the six datasets listed in
the introduction: DBPedia, Linked Geo Data (LGD), MetaLex, Open-BioMed
(OBM), Bio2RDF5 and Semantic Web Dog Food (SWDF). These datasets were
chosen based on the availablity of SPARQL queries. These datasets were the
only ones with an available correponding large query set. The MetaLex query
logs were made available by the maintainers of the dataset. In the other �ve
cases, we used server query logs made available by the USEWOD workshop
series [9].

Table 1 shows that the size of these dataset ranges from 240K triples to
459M triples. The number of available queries per dataset ranges between 193
and 4933. Interestingly, for all but one of our datasets, less than 2% of the
triples is actually needed to answer the queries. Even though the majority of

5 For Bio2RDF, we use the KEGG dataset [21], as this is the only Bio2RDF dataset
for which USEWOD provides query logs. KEGG includes biological systems infor-
mation, genomic information, and chemical information.
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these queries are machine generated (see Section 7), this indicates that only a
very small portion of the datasets is relevant, which corroborates our intuition
that the costs for using Linked Data sets can be signi�cantly reduced by selecting
only the relevant part of a dataset. However, these low numbers make �nding
this small set of relevant triples more di�cult as well. Other relevant dataset
properties shown in this table are the average degree of the subjects and objects,
the percentage of triples where the object is a literal, the percentage of queries of
which at least one binding uses a literal, and the average and standard deviation
of the number of triple patterns per query.

4 Sampling Pipeline

The SampLD pipeline calculates and evaluates the quality of samples across dif-
ferent uninformed sampling methods for multiple large datasets.6 The procedure
consists of the following four phases:

1. rewrite an RDF graph to a directed unlabeled graph,
2. analyze the rewritten graph using standard network analysis algorithms,
3. assign the node weights to triples, creating a ranked list of triples,
4. generate samples from the ranked list of triples.

We brie�y discuss each of the four phases here.

Step 1: Graph Rewriting Standard network analysis methods, are not readily
suited for labeled graphs, nor do they take into account that a data model may be
re�ected in the verbatim RDF graph structure in many ways [16]. Since the edge
labels (predicates) play an important role in RDF, simply ignoring them may
negatively impact the quality of samples (see the related work). For this reason,
the SampLD pipeline can evaluate pairwise combinations of network analysis
techniques and alternative representations of the RDF graph, and compare their
performance across sample sizes.

SampLD implements �ve rewriting methods: a simple (S), unique literals

(UL), without literals (WL), context literals (CL), and path (P). As can be seen

6 The SampLD pipeline and evaluation procedure are available online at https://

github.com/Data2Semantics/GraphSampling/
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in Figure 1, the �rst four methods convert every triple (s, p, o) to a directed edge
s → o. If several triples result in the same edge (e.g. when only the predicate
di�ers), we do not assert that edge more than once. These �rst four methods
di�er primarily with respect to their treatment of literal values (i.e. non-IRI
nodes) in the graph. It is important to note that for all approaches, any removed
literals are re-added to the RDF graph during the round-trip phase detailed
below. Since literals do not have outgoing edges they have a di�erent e�ect on
network metrics than IRIs, e.g. by acting as a `sink' for PageRank.

The Simple (S) method retains the exact structure of the original RDF graph.
It treats every syntactically unique literal as a single node, taking the data
type and language tag of the literal into account. Two occurrences of the literal
�50"��xsd:Integer result in a single node. The Unique literals (UL) method con-
verts every occurrence of a literal as a separate node. The average degree drops,
and the graph becomes larger but will be less connected. The Context literals
(CL) approach preserves the context of literals, it groups literals that share the
same predicate together in a single node. This allows us to make sure that the
network metrics distinguish e.g. between integers that express weight, and those
that express age. This also results in fewer connections and a lower average de-
gree since predicate-literal pairs will be less frequent than literals. The Without
literals (WL) method simply ignores all occurrences of literals. As a result the
graph becomes smaller.

The �fth method, Path (P), is triple, rather than resource oriented. It rep-
resents every triple (s, p, o) as a single node, and two nodes are connected when
they form a path of length 2, i.e. their subject and object must overlap. As-
serting edges between triples that share any resource discards the direction of
the triple, and produces a highly verbose graph, cf. [18], as a resource shared

between n triples would generate n(n−1)
2 edges. Also, occurrences of triples with

rdf:type predicates would result in an extremely large number of connections.
The path method has the advantage that it results in a smaller graph with low
connectedness, and that maintains directedness, where we can assign weights
directly to triples rather than resources (as with the other methods).

Step 2: Network Analysis In the second step, SampLD applies three common
network analysis metrics to the rewritten RDF graph: PageRank, in degree and
out degree. These are applied �as is� on the rewritten graphs.

Step 3: Assign Triple Weights Once we have obtained the network analysis
metrics for all nodes in the rewritten graph, the (aggregated) values are assigned
as weights on the triples in the original graph. For method P, we simply assign
the value of the node that corresponds to the triple. For the S, UL, WL and
CL methods, we retrieve the values for the subject and object of each triple,
and assign whichever is highest as weight to that triple7. When the object of a

7 One can also use the minimum or average node weight. We found that the maximum
value performs better



triple is a literal, it has no corresponding node in the graph produced through
the WL method: in such cases, the value of the subject will function as weight
for the triple as a whole. The result of this assignment phase is a ranked list of
triples, ordered by weight in descending order. The distribution of triple weights
typically follows a `long tail' distribution, where large numbers of triples may
share the same weight. To prevent potential bias when determining a sample,
these triples with equal weights are added to the ranked list in random order.

Step 4: Generating Samples Given the ranked list of triples, generating the
sample is a matter of selecting the desired top-k percent of the triples, and re-
moving the weights. The `best' k value can di�er per use-case, and depends on
both the minimum required quality of the sample, and the maximum desired
sample size. For our current purposes SampLD produces samples for each accu-
mulative percentile of the total number of triples, resulting in 100 samples each
for every combination of dataset, rewrite method and analysis algorithm.

Implementation Because the datasets we use are quite large, ranging up to 459
Million triples for DBPedia, each of these steps was implemented using libraries
for scalable distributed computing (Pig [13] and Giraph [6]). Scale also means
that we are restricted in the types of network metrics we could evaluate. For
instance, Betweenness Centrality is di�cult to paralellize because of the need
for shared memory [31]. However many of the tasks are parallelizable, e.g. we
use Pig to fetch the weights of all triples.

Given the large number of samples we evaluate in this paper (over 15.000,
considering all sample sizes, datasets and sampling methods), SampLD uses a
novel scalable evaluation method that avoids the expensive procedure (in terms
of hardware and time) of loading each sample in triple-stores to calculate the
recall.

5 Experiment Setup and Evaluation

The quality of a sample is measured by its ability to return answers on a set of
queries: we are interested in the average recall taken over all queries. Typically,
these queries are taken from publicly available server query logs, discarding those
that are designed to return all triples in a dataset, and focusing on SELECT
queries, as these are the most dominant. A naive approach would be to execute
each query on both the original dataset and the sample, and compare the results.
This is virtually impossible, given the large number of samples we are dealing
with: 6 datasets means 15.600 samples (one, for every combination of dataset
(6), sampling method (15) and baseline (1+10), and percentile(100)), or 1.4·1012
triples in total.

Instead, SampLD (a.) executes the queries once on the original dataset and
analyzes which triples are used to answer the query, (b.) uses a cluster to check
which weight these triples have. It then (c.) checks whether these triples would
have been included in a sample, and calculates recall. This avoids the need to load
and query each sample. Below, we give a detailed description of this procedure.



Terminology For each graph G we have a set of SELECT queries Q, acting
as our relevance measure. Each Q ∈ Q contains a set of variables V, of which
some may be projection variables Vp ⊆ V (i.e. variables for which bindings are
returned). Executing a query Q on G returns a result set Rg

q , containing a set of
query solutions S. Each query solution S ∈ S contains a set of bindings B. Each
binding B ∈ B is a mapping between a projection variable Vp ∈ Vp and a value
from our our graph: µ : Vp → (I ∪ L)

Required Triples Rewriting a SELECT query into a CONSTRUCT query
returns a bag of all triples needed to answer the SELECT query. However,
there is no way to determine what role individual triples play in answering the
query: some triples may be essential in answering all query solutions, others just
circumstantial. Therefore, SampLD extracts triples from the query on a query

solution level. It instantiates each triple pattern, by replacing each variable used
in the query triple patterns with the corresponding value from the query solution.
As a result, the query contains triple patterns without variables, and only IRIs
and literals. These instantiated triple patterns (`query triples') show us which
triples are required to produce this speci�c query solution. This procedure is not
trivial.

First, because not all variables used in a query are also projection variables,
and blank nodes are inaccessible as well, we rewrite every SELECT query to the
`SELECT DISTINCT *' form and replace blank nodes with unique variable names.
This ensures that all nodes and edges in the matching part of the original graph
G are available to us for identifying the query triples. However, queries that
already expected DISTINCT results need to be treated with a bit more care.
Suppose we have the following query and dataset:

SELECT DISTINCT ?city WHERE {

?university :inCity ?city ;

:rating :high .

}

<university1> :inCity <London> .

<university1> :rating <high> .

<university2> :inCity <London> .

<university2> :rating <high> .

Rewriting the query to `SELECT DISTINCT *' results in two query solutions,
using all four dataset triples. However, we only either need at least the �rst two
triples, or the last two, but not all four. SampLD therefore tracks each distinct
combination of bindings for the projection variables Vp.

Secondly, when the clauses of a UNION contain the same variable, but only
one clause matches with the original graph G, the other clause should not be
instantiated. We instantiate each clause following the normal procedure, but use
an ASK query to check wether the instantiated clause exists in G. If it does not
exist, we discard the query triples belonging to that clause.

Thirdly, we ignore the GROUP and ORDER solution modi�ers, because
they do not tell us anything about the actual triples required to answer a query.
The LIMIT modi�er is a bit di�erent as it indicates that the user requests a
speci�c number of results, but not exactly which results. The limit is used in



recall calculation as a cap on the maximum number of results to be expected for
a query. In other words, for these queries we don't check whether every query
solution for G is present for the sample but only look at the proportion of query
solutions.

Finally, we currently ignore negations in SPARQL queries since they are very
scarce in our query sets. Negations may increase the result set for smaller sample
sizes, giving us a means to measure precision, but the e�ect would be negligible.

Calculate Recall For all query triples discovered in the previous step, and for
each combination of rewrite method and network analysis algorithm, we �nd the
weight of this triple in the ranked list of triples. The result provides us with
information on the required triples of our query solutions, and their weights
given by our sampling methods. SampLD can now determine whether a query
solution would be returned for any given sample, given the weight of its triples,
and given a k cuto� percentage. If a triple from a query solution is not included
in the sample, we mark that solution as unanswered, otherwise it is answered.

Recall is then determined as follows. Remember that query solutions are
grouped under distinct combinations of projection variables. For every such com-
bination, we check each query solution, and whenever one of the grouped query
solutions is marked as answered, the combination is marked answered as well.
For queries with OPTIONAL clauses, we do not penalize valid query solutions
that do not have a binding for the optional variable, even though the binding
may be present for the original dataset.8 If present, the value for the LIMIT
modi�er is used to cap the maximum number of answered query solutions.

The recall for the query is the number of answered projection variable combi-
nations, divided by the total number of distinct projection variable combinations.
For each sample, SampLD uses the average recall, or arithmetic mean over the
query recall scores as our measure of relevance.

Baselines In our evaluation we use two baselines: a random selection (rand)
and using resource frequency (freq). Random selection is based on 10 random
samples for each of our datasets. Then, for each corresponding query we calculate
recall using the 10 sampled graphs, and average the recall over each query. The
resource frequency baseline counts the number of occurrences of every subject,
predicate and object present in a dataset. Each triple is then assigned a weight
equal to the sum of the frequencies of its subject, predicate and object.

6 Results

This section discusses the results we obtained for each of the datasets. An in-
teractive overview of these results, including recall plots, signi�cance tests, and
degree distributions for every dataset, is available online.9 Figure 2a shows the
best performing sample method for each of our datasets. An ideal situation would

8 Queries with only OPTIONAL clauses are ignored in our evaluation
9 See http://data2semantics.github.io/GraphSampling/

http://data2semantics.github.io/GraphSampling/
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(b) PageRank (DBPedia)
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(c) In degree (DBPedia)
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(d) Out degree (DBPedia)
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Fig. 2: Best samping methods per dataset (a) and comparison of methods for
DBPedia (b,c,d)12

show a maximum recall for a low sample size.10 For all the datasets, these best
performing sampling methods outperform the random sample, with often a large
di�erence in recall between both. The P rewrite method (see Figure 1) combined
with a PageRank analysis performs best for Semantic Web Dog Food and DB-
pedia (see also Figure 2). The UL method combined with an out degree analysis
performs best for Bio2RDF and Linked Geo Data. For Open-BioMed theWL and
out degree performs best, where the naive resource frequency method performs
best for MetaLex. For each dataset, the random baseline follows an (almost)
linear line from recall 0 to 1; a stark di�erence with the sampling methods.

Figure 2a also shows that both the sample quality and method di�ers between
datasets. Zooming in on sample sizes 10%, 25% and 50%, the majority of the best

10 Note that all plots presented in this paper are clickeable, and point to the online
interactive version

http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Pagerank&enabled=DBpedia-Path%20-%20Pagerank&enabled=DBpedia-Simple%20-%20Pagerank&enabled=DBpedia-UniqueLiterals%20-%20Pagerank&enabled=DBpedia-WithoutLiterals%20-%20Pagerank
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Indegree&enabled=DBpedia-Path%20-%20Indegree&enabled=DBpedia-Simple%20-%20Indegree&enabled=DBpedia-UniqueLiterals%20-%20Indegree&enabled=DBpedia-WithoutLiterals%20-%20Indegree
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Outdegree&enabled=DBpedia-Path%20-%20Outdegree&enabled=DBpedia-Simple%20-%20Outdegree&enabled=DBpedia-UniqueLiterals%20-%20Outdegree&enabled=DBpedia-WithoutLiterals%20-%20Outdegree


performing sampling methods have signi�cantly better average recall (α = 0.05)
than the random sample. Exceptions are LGD and Bio2RDF for sample size
10%, and MetaLex for sample size 10% and 25%.

The dataset properties listed in Table 1 help explain results for some sampling
methods. The resource frequency baseline performs extremely bad for OBM9:
for all possible sample sizes, the recall is almost zero. Of all objects in Open-
BioMed triples, 45.37% are literals. In combination with 32% duplicate literals,
this results in high rankings for triples that contain literals for this particular
baseline. However, all of the queries use at least one triple pattern consisting
only of IRIs. As most dataset triples contain a literal, and as these triples are
ranked high, the performance of this speci�c baseline is extremely bad.

Another observation is the presences of `plateaus' in Figure 2a, and for some
sample sizes a steep increase in recall. This is because some triples are required
for answering a large number of queries. Only once that triple is included in a
sample, the recall can suddenly rise to a much higher level. For the Bio2RDF
sample created using PageRank and the path rewrite method (viewable online),
the di�erence in recall between a sample size of 1% and 40% is extremely small.
In other words, choosing a sample size of 1% will result in more or less the same
sample quality as a sample size of 40%.

Figure 2 (b,c,d) shows the performance of the sampling methods for DBpe-
dia. The P method combined with either PageRank or in degree performs best
on DBpedia, where both baselines are amongst the worst performing sampling
methods. A sample size of 7% based on the P and PageRank sampling method
already results in an average recall of 0.5. Notably, this same rewrite method
(P) performs worst on DBpedia when applied with out degree. This di�erence
is caused by triples with literals acting as sink for the path rewrite method: be-
cause a literal can never occur in a subject position, that triple can never link to
any other triple. This causes triples with literals to always receive an out degree
of zero for the P rewrite method. Because 2/3 of the DBpedia queries require
at least one literal, the average recall is extremely low. This `sink' e�ect of P
is stronger compared to other rewrite methods: the triple weight of these other
methods is based on the weight of the subject and object (see section 4). For
triples containing literals, the object will have an out degree of zero. However,
the subject may have a larger out degree. As the subject and object weights are
aggregated, these triples will often receive a non-zero triple weight, contrary to
the P rewrite method.

Although our plots show striking di�erences between the datasets, there are
similarities as well. First, the out degree combined with the UL, CL and S
methods performs very similar across all datasets and sample sizes (See our
online results9). The reason for this similarity is that these rewrite methods only
di�er in how they treat literals: as-is, unique, or concatenated with the predicate.
These are exactly those nodes which always have an out degree of zero, as
literals only have incoming edges. Therefore, this combination of rewrite methods
and network analysis algorithms performs consistently the same. Second, the in
degree of the S and CL rewrite methods are similar as well for all datasets with



only a slight deviation in information loss for DBpedia. The main idea behind the
CL is appending the predicate to the literal to provide context. The similarity
for the in degree of both rewrite methods might indicate only a small di�erence
between the literals in both rewrite methods regarding incoming links: adding
context to these literals has no added value. DBpedia is the only dataset with a
di�erence between both rewrite methods. This makes sense, as this dataset has
many distinct predicates (53.000), which increases the chances of a single literal
being used in multiple contexts, something the CL rewrite method is designed
for.

What do these similarities buy us? They provide rules of thumb for applying
SampLD to new datasets, as it shows which combinations of rewrite methods
and network analysis algorithms you can safely ignore, restricting the number of
samples to create and analyze for each dataset.

7 Conclusion

This paper tests the hypothesis as to whether we can use uninformed, network
topology based methods to estimate semantic relevance of triples in an RDF
graph. We introduced a pipeline that uses network analysis techniques for scal-
able calculation and selection of ranked triples, SampLD. It can use �ve ways
to rewrite labeled, directed graphs (RDF) to unlabeled directed graphs, and
runs a parallelized network analysis (indegree, outdegree and PageRank). We
furthermore implemented a method for determining the recall of queries against
our samples that does not require us to load every sample in a triple store (a
major bottleneck). As a result, SampLD allows us to evaluate 15.600 di�erent
combinations of datasets, rewritten graphs, network analysis and sample sizes.

RDF graph topology, query type and structure, sample size; each of these can
in�uence the quality of samples produced by a combination of graph rewriting
and network analysis. This paper does not o�er a de�nitive answer as to which
combination is the best �t: we cannot yet predict the best performing sampling
method given a data and query set. To make this possible, we plan to use Ma-
chine Learning on the results for several more independent data and query sets.
Although SampLD provides the technical means, the number of publicly avail-
able query sets is currently too limited to learn signi�cant correlations (6 query
sets in total for USEWOD 2013, only 3 in 2014)11.

In other work [27,28] we propose a SPARQL client (YASGUI), of which its
logs allows us to gather and analyze queries for a wider range of datasets. [28]
shows that these queries are quite di�erent from the ones we can �nd in the
publicly available server logs that we had access to for the purposes of this
paper. In future work, we will use these query features in abstract, intermediate
representations of queries and query sets. This allows us to better understand the
e�ect of query types on our sampling methods, and forms the basis for sample

11 See http://data.semanticweb.org/usewod/2013/challenge.html and
http://usewod.org/reader/release-of-the-2014-usewod-log-data-set.html,
respectively

http://data.semanticweb.org/usewod/2013/challenge.html
http://usewod.org/reader/release-of-the-2014-usewod-log-data-set.html


quality prediction: a prerequisite for more informed sampling methods. Finally,
a deeper analysis of the queries will also reveal information about the dynamics
of Linked Data usage: does the part of the data touched by queries remain stable
over time, or is it very volatile? In other words, is the 2% coverage from Table
1 predictive for future situations?

Our results, all of which are available online12, indicate that the topology
of RDF graphs can be used to determine good samples that, in many cases,
signi�cantly outperform our baselines. Indeed, this shows that we can mimic
semantic relevance through structural properties of RDF graphs, without an
a-priori notion of relevance.
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