
Semantic Web in a Constrained Environment

Laurens Rietveld and Stefan Schlobach

Department of Computer Science, VU University Amsterdam, The Netherlands
{laurens.rietveld,k.s.schlobach}@vu.nl

Abstract. The semantic web is intrinsically constrained by its environ-
ment. These constraints act as a bottlenecks and limit the performance
of applications in various ways. Examples of such constraints are the lim-
ited availability of memory, disk space, or a limited network bandwidth.
But how do these bounds influence Semantic Web applications? In this
paper we propose to study the Semantic Web as part of a constrained
environment. We discuss a framework where applications adapt to the
constraints in its environment.

Keywords: downscaling, ranking, constraints, resource bounds

1 Introduction

Agreement that the Semantic Web has become a huge success story is widening:
standardised languages exist for representing web data and ontologies, together
with tools to deal with such semantic information. This facilitates applications
that publish and consume triples in the billions, in domains as various as life-
sciences, cultural heritage, e-business and journalism. Additionally, the number
of robust commercial triple stores is constantly increasing, and successful DBMS
such as Oracle become RDF aware. Parallelization and distribution have made
expressive semantic reasoning massively scalable, and the movement towards
storage and reasoning in the cloud suggest that even the last technological bar-
riers can soon be overcome.

Although we partially share this optimistic view, it only paints a part of a
larger picture. In fact, the apparent scalability critically depends on a compu-
tational infrastructure that is out of reach for the vast majority of the human
population. Powerful servers, supercomputers and clusters are the privilege of
few. Often, users of the Semantic Web cannot rely on a constant and reliable
Internet connection with sufficient bandwidth. In more remote regions, even elec-
tricity supply is not always guaranteed, with restricted battery runtime having
to be considered when building applications. But it is not just the infrastructure,
or its lack of, that provides unsurpassable boundaries for the Semantic Web to
be used and useful. Think, e.g., of real-time user interaction interaction that
restricts the computation time to the often very short attention span of humans.
After all, who wants to wait more than a few seconds for search results? Ad-
ditionally, such interaction has to take the human processing bandwidth into



account. Anybody wants to see more than 10 search results? No. In short: the
Semantic Web is bound by resource availability.

Although those bounds look diverse at first glance, we suggest to study in-
formation access and processing on the Semantic Web in the context of these
bounds more systematically. The purpose of such an analysis is not an end in
itself: such an analysis of the relation between Semantic Web applications and
the way they are resource bound can help when building better applications, or
to build good applications more easily. A promising approach is to study the
explicit and intrinsic orderings and rankings in data and the information need.
This information can then be used to deal with the resource-bounds. Take as ex-
ample the human attention span, which requires applications to produce results
extremely fast. This is often impossible in computationally expensive representa-
tion languages and for applications involving complex data, unless the intrinsic
rankings are used to produce good results first and fast. Ranking of goodness is
at the basis of such any-time approaches.

This paper is a first attempt to investigate the dependencies between partic-
ular resource bounds and the type of orderings and rankings used to overcome
the boundaries. Is there a more generic relation between ranking and resources?
And if so, can we explicate this relation, and use it to guide the process of
building Semantic Web applications in a resource bound world? The rest of this
paper introduces a number of assumptions underlying our approach (section 2).
Following, we study those assumptions in the context of two Semantic Web appli-
cations(section 3). We conclude with future work and open questions(section 4).

2 Constraints & Ranking

In the introduction we claim that resource bounds and rankings are related. This
claim constitutes the foundations of an unifying idea for more easily building
good application for the Semantic Web: the idea of using orderings in the data
and application requirements to deal with explicitly defined resource bounds.
This section will introduce those claims more systematically. We will first elab-
orate on these statements. Afterwards, in the next section, we will study them
in light of two very different use-cases.

(1.) The world is resource bound. Our environment is full of constraints.
These bounds constrain us, applications, and the way we interact with, and have
to build, these applications.

(2.) Deal with these constraints. Applications have to (implicitly) deal with
these constraints, which often means trading functionality of the application to
remain within the given bounds (e.g. switch to off-line mode when there is no
connectivity).

(3.) We need ranking Applications can deal with these constraints by ranking
results and/or tasks. This enables the application to take a sub-selection (top-
k) part of the results or tasks, and process them. In doing so, the application

2



does not process the complete result or task set. An example where the ordering
of tasks is used to adapt to changing bounds, is that of an operating system.
Most operating systems will rank the running tasks in importance, and give the
higher ranked tasks precedence. This ensures the most important tasks will still
run whenever there is a high CPU load (resource bound).

(4.) Ranking: it’s all in the data Ranking of results and/or tasks depends on
rankings of data. This data often contains explicit ordering such as recency. Or
there is a more implicit ordering covering items such as importance or relevance.
For this framework we selected a set of ranking measures which are easy to
retrieve and calculate:

– Recency: How old is this entity
– Size: How large is this entity
– Frequency: How often is this entity used or accessed
– Similarity: How similar is this entity compared to others

(5.) We need explicit bounds In doing so, an application is able to use these
bounds as input, and link these bounds to other functionality in the application.
The following list is a first attempt at distinguishing between the generic types
of constraints relevant for Semantic Web applications:

Hardware Constraints We consider any machine (e.g. server, pc, laptop)
hardware restriction as a machine constraint. Examples of such constraints
are Memory, Hard disk space or Battery power. Not all constraints are appli-
cable to every domains. For example, the hardware restriction Battery power
only applies to environments where laptops are used.

Network Constraints The Semantic Web needs network connections. The
connections between the nodes in such a network are constrained by for
example Network Bandwidth or available connectivity.

Interaction Constraints We consider interaction constraints as the constraints
imposed by the limits of the agent using the application. These constraints
are more difficult to obtain, but they might be retrievable from access logs or
user profiles. Examples are reaction time1 or Processing Bandwidth, i.e. the
maximum information an agent is capable of processing in a given situation.

(6.) Tell me your bounds and ranking, and I deal with them. This
requires an explicit link between the constraints and the ranking measures. By
using this link, applications can adapt their ranking measures to the changing
resource bounds. The ability to adapt is particularly useful, because resource
bounds are not static: Network bandwidth might fluctuate, just as available
memory can change. Applications and the way they use the ranking measures
should change as well.

The picture shown in figure 1 illustrates the plausible connections between
the constraints and the ranking measures. The case study descriptions in the
next section will elaborate on these connections in more detail.
1 The maximum time limit between a request of the agent to the SW application, and

the desired response from the application.

3



Similarity Frequency Size Frequency

Hard Disk Space

Battery Power

Memory

Network Bandwidth

Available Connectivity

Reaction Time

Processing Bandwidth

Ranking Measures

C
o

n
st

ra
in

ts

Fig. 1: Ranking Measures vs. Constraints

3 Case Studies

We discuss two very different case studies: the SemanticXO and visualization of
census data, and the way rankings and resources bounds relate in them.

3.1 SemanticXO

An environment with obvious constraints is given in the SemanticXO project.
The XO laptop is part of the One Laptop per Child (OLPC) project. The aim
of OLPC is to create educational opportunities for the worlds poorest children
by providing each child with a ‘rugged, low-cost, low-power, connected laptop’.
The SemanticXO is a project which aims ”to provide an infrastructure that is
needed to integrate semantic information from the Web of Data into programs
(...) running on an XO computer” [2].

Software Stack Currently, the SemanticXOs software stack contains [2]:

– A triple store, in charge of storing triples with meta-data.
– An HTTP server, which serves as a public interface to the triple store, pro-

vide de-referenceable URIs for the resources, and serve the files. The HTTP
server is accessible by other XOs.

– A common interface (API) for accessing the triples stored locally, on another
SemanticXO, or elsewhere on the Web of Data.

The SemanticXO uses this software stack to store information as a Data Graph
in the triple store. After the graph is stored in the triple store, it is available to
other XOs via the HTTP Server or the API.

Problem description XO’s are often used in a network with similar XO’s,
where a school server functions as an access point with internet connection.
Currently, distributing information within such difficult. Moving information
from one XO to another requires both XOs to be on-line, and run the same
program (called ‘activity’). Situations where the recipient of information is off-
line, where information may be shared asynchronously, or where information
needs to be shared regardless of any running activity, are currently impossible
to deal with.

4



The SemanticXO offers a framework with which to approach this problem.
Currently, objects containing meta-information are stored locally as a data store
object (DS-Object). These objects contain meta-information, and contain (a
combination of) attribute-value pairs. More complex information such as images
are stored separately. Generic shipping of objects requires a DS-Object to be
wrapped as a Semantic DS-Object (SDS-Object), which is stored as a graph in
the triple store. Via the HTTP server or the API, this information is automati-
cally available to other XO’s in the network. Using this infrastructure, the nodes
can share and sync objects. This creates a network of loosely coupled triple stores
between which information has to be distributed.

Constraints & Ranking We will discuss the constraints and rankings in this
case study, using the claims from the previous section.

(1.) The world is resource bound Internet connections are unreliable or have
a very limited bandwidth, and hardware may not be on-par with regular laptops
and desktops, to name but a few.

(2.) Deal with these constraints Not dealing with constraints such as network
bandwidth will most likely result in an inadequate distribution of objects. Not
all objects may be distributed to all nodes, which means SDS-Objects run a risk
of not being delivered to the intended recipient.

(3.) We need ranking Constraints may limit the number of SDS-Objects to
be shared, which means a subsection of the SDS-Objects should be synced. This
is essentially a top-k ranking problem, where only the most useful objects are
cached and synced, and others are ignored.

(4.) Ranking: it’s all in the data Relevant ranking measures are Recency (i.e.
how long ago is this graph created or modified), Size (i.e. how big (in bytes) is
the graph), and Frequency (i.e. how often is this graph synced)

(5.) We need explicit bounds The resource bounds of the SemanticXO are
either caused by the hardware specification[1] or the XO network connections.
We consider the following resource bounds for the SemanticXO (a subset of
the bounds described in section2): Available memory, available hard disk space,
battery power, network bandwidth and available connectivity.

(6.) Tell me your bounds and ranking, and I deal with them By combining
the resource bounds (5), the rankings (4) and the links between both (fig 1), the
application can deal and adapt to its resource bounds. We consider the following
relations between the constraints and these rankings measures:

1. Hard Disk Space: With limited disk space available, giving precedence to
smaller (size) objects will allow the SemanticXO to store a larger quantity
of objects.

2. Battery Power: When battery power is running low, giving precedence to
recency and frequency will make sure the old objects which have not been
synced that often are ordered higher than others, because older objects in
the queue might indicate these objects are not spread through the network.

3. Available Memory: Processing large graphs might require more memory.
When available memory is low, precedence should be given to smaller graphs.

5



Fig. 2: Census Visualization

4. Network Bandwidth: A low network bandwidth should decrease the im-
portance of the size of SDS-Objects. This way, at least the smaller objects
will still be distributed via this node.

5. Available Connectivity: When the SemanticXO is connected to a very
limited number of other nodes, the graphs which are not very well distributed
in the network should be given precedence. This means objects which are
not often synced (frequency) and older object (recency) are ranked higher
than others.

This framework is particularly useful for the SemanticXO, because hardware may
differ between XO’s. An XO server has completely different hardware (bounds)
than a regular XO laptop. Using the described framework, the server and laptop
can both optimize their performance based on their own resource bounds.

3.2 Visualizing Census Data
To show that resource bounds are not limited to the environment of developing
countries we describe a totally different application where Dutch historical census
data is visualized. This use case is part of the Data2Semantics project2, which
focusses on the problems of ‘how to share, publish, access, analyse, interpret and
reuse scientific data’.

Visualizing Census Data This dataset contains Dutch census counts from
between 1795 and 1971, and covers demographic information, such as gender,
age, location, marital status, occupation, household and religion. An example of
an application making use of the (convert to RDF) dataset is shown in figure 2.
This visualization has several selectors:
1. Variable selection: The variable of which the distribution is shown on the

map
2. Time: The year of the census count

2 www.data2semantics.org

6

www.data2semantics.org


3. Zoom: Zoom in or out of the map
4. Age: Age range for which to visualize the data for
5. Aggregation Level: The aggregation level for the visualization. Changing this

value changes the granularity of the colors on the map.

Because this visualization makes use of a SPARQL endpoint, these selectors
correspond to SPARQL queries. In this respect, we can consider the variable
selection, time, and age as filters, and the aggregation level as a ‘group by’.

Constraints & Ranking We will discuss the constraints and rankings in this
case study, using the claims from section 2.

(1.) The world is resource bound This visualization application is clearly
resource bound. Users will expect near to any-time responses when changing the
sliders. Additionally, the application will have to deal with current (consumer)
hardware and network constraints.

(2.) Deal with these constraints Not adapting to the constraints leads to
situations where the response time (when changing a slider) is too long.

(3.) We need ranking A way to deal with these constraints is by pre-executing
queries. Executing all possible setting combination will not be feasible, however:
there are too many possible combinations of queries. Deciding which queries to
pre-execute, though, is a ranking problem/

(4.) Ranking: it’s all in the data Relevant ranking measures are:
1. Query similarity: Difference in similarity between current view, and the pos-

sible query. The bigger the difference, the wider the ‘window’ becomes which
is being pre-executed.

2. Frequency of usage: Selectors often used are more interesting to pre-execute.
Therefore, queries where the filter value of a frequently used selector is dif-
ferent from the filter value in the SPARQL query of the current view, should
have precedence.

3. Size of expected number of results for a given query: e.g., decreasing the
aggregation level increases the retrieved number of triples.

(5.) We need explicit bounds The resource bounds of this visualization in-
volve: available memory, network bandwidth, reaction time of the user, and
processing bandwidth of the user.

(6.) Tell me your bounds and ranking, and I deal with them By combining
the resource bounds (5), the rankings (4) and the links between both (fig 1), the
application can deal and adapt to its resource bounds. We consider the following
relations between these constraints and the rankings measures:

1. Memory: Limited memory implies limited available space to store the query
results. This should give precedence to queries where the expected query
result is low.

2. Network bandwidth: The smaller the network bandwidth is, the smaller
the expected size of query results should be.

3. Reaction time: More time might allow for a smaller query similarity, which
results in a bigger window size for the pre-executed queries. A larger interval
allow for a larger query result, as there is more time available for the response
to be generated and processed.

7



4. Processing bandwidth: The more information a user is able to process,
the larger the size of the query result may be, and the bigger the allowed
windows size may be (query similarity).

4 Future Work & Conclusion

This paper showed a perspective with which to consider applications in a (dy-
namic) resource bound environment. The presented framework should allow se-
mantic web applications to adapt to changing constraints, by making use of
the explicit and intrinsic orderings and rankings in the data. We showed the
generic link between ranking and constraints, and put these into context of two
very different case studies. This framework is not complete though. A roadmap
towards completion requires discussion on some unanswered questions, and an
implementation/evaluation of this framework. Current open questions are:

– The ranking measures mentioned in section2 are very broad: recency, size,
frequency and similarity. Can we keep these notions on such a generic level?
Or are these ranking measures open to interpretation, depending on the
application domain?

– What are the generic relations between constraints and ranking measures?
For both use cases we show some links. Are these generic? And does dealing
with one constraints influence other constraints? Is there a cost in dealing
with constraints.

– How do the ranking measures relate to each other in such a dynamic system?
How is the final ranking score determined?

– How to define interaction constraints? Different users interact differently
with a system.

– How does this approach hold up against other methods such as the use of
access control, differentiated services, or formal maximization under con-
straint?

The main question seems to be: does explicating these concepts and relations
work in practice? This requires further implementation and evaluation of this
framework in one of the use cases.

Acknowledgements. This publication was supported by the Dutch national
program COMMIT.

References

1. CL1 Hardware Design Specification (2008)
2. Guéret, C., Schlobach, S.: SemanticXO : connecting the XO with the World’s

largest information network. In: Proceedings of the First International Conference
on e-Technologies and Networks for Development (ICeND2011). ”Communications
in Computer and Information Science”, Springer LNCS, Dar-es-Salaam, Tanzania
(2011)

8


	Semantic Web in a Constrained Environment

