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Abstract. It is widely accepted that proper data publishing is difficult.
The majority of Linked Open Data (LOD) does not meet even a core
set of data publishing guidelines. Moreover, datasets that are clean at
creation, can get stains over time. As a result, the LOD cloud now con-
tains a high level of dirty data that is difficult for humans to clean and
for machines to process.
Existing solutions for cleaning data (standards, guidelines, tools) are
targeted towards human data creators, who can (and do) choose not
to use them. This paper presents the LOD Laundromat which removes
stains from data without any human intervention. This fully automated
approach is able to make very large amounts of LOD more easily available
for further processing right now.
LOD Laundromat is not a new dataset, but rather a uniform point of
entry to a collection of cleaned siblings of existing datasets. It provides
researchers and application developers a wealth of data that is guar-
anteed to conform to a specified set of best practices, thereby greatly
improving the chance of data actually being (re)used.
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1 Introduction

Uptake of Linked Open Data (LOD) has seen a tremendous growth over the
last decade. Due to the inherently heterogeneous nature of interlinked datasets
that come from very different sources, LOD is not only a fertile environment for
innovative data (re)use, but also for mistakes and incompatibilities [4, 5]. Such
stains in datasets not only degrade a dataset’s own quality, but also the quality
of other datasets that link to it (e.g., by using owl:sameAs). There is thus an
incentive to clean stains in LOD that goes beyond that of the original dataset
creators.

Existing solutions for cleaning Semantic Web (SW) data (standards, guide-
lines, tools) are targeted towards human data creators, who can (and do) choose
not to use them. Therefore, despite these efforts, much of LOD is still difficult
to use today, mostly because of mistakes for which solutions exist. This poses



an unnecessary impediment to the (re)use of LOD for academic and commercial
purposes.

This paper presents the LOD Laundromat, which takes immediate action
by targeting the data directly, not its maintainers. By cleaning stains in LOD
without any human intervention, LOD Laundromat is able to make very large
amounts of LOD more easily available for further processing right now. The
collection of cleaned datasets that LOD Laundromat produces are standards-
and guidelines-compliant siblings of existing, idiosyncratic datasets.

The data-oriented approach of LOD Laundromat is complementary to exist-
ing efforts, since it is preferable that someday the original dataset is cleaned by
its own maintainers. However, we believe that until that day, our complemen-
tary approach is necessary to make LOD succeed while the momentum is still
there. LOD Laundromat is unlike any of the existing initiatives towards realizing
standards-compliant LOD in each of the following three ways:

1. The scale on which clean data is made available: LOD Laundromat com-
prises thousands of data files, and billions of triples.

2. The speed at which data is cleaned and made available: LOD Laundromat
cleans about a billion triples a day and makes them immediately available
online.

3. The level of automation. LOD Laundromat automates the entire data
processing pipeline, from dataset discovery to serialization in a standards-
compliant canonical format that enables easy reuse.

Besides making LOD standards-compliant, LOD Laundromat implements exist-
ing standards in such a way that the resultant data documents are specifically
geared towards easy reuse by further tooling. This includes simplifying certain
aspects of LOD that often cause problems in practice, such as blank nodes, and
significantly reducing the complexity for post-processors to parse the data, e.g.,
through a syntax that is regular expression-friendly.

The LOD Laundromat is available at http://lodlaundromat.org. The col-
lection of datasets that it comprises is continuously being extended. Anyone can
add new seed points to the LOD Laundry Basket by using a Web form or HTTP
GET request. The fully automated LOD Washing Machine takes seed points
from the LOD Laundry Basket and cleans them. Cleaned datasets are dissem-
inated in the LOD Wardrobe. Human data consumers are able to navigate a
large collection of high-quality datasets. Machine processors are able to easily
load very large amounts of real-world data, by selecting clean data documents
through a SPARQL query. For illustrative purposes, various visualizations about
the cleaned data are available as well.

This paper is organized as follows: section 2 gives an overview of related
work. Section 3 specifies the requirements we pose for clean and useful data,
and briefly explores alternative approaches towards collecting large amounts of
Linked Data. Section 4 details the major operationalization decisions that allow
the data cleaning process to be fully automated. Section 5 elaborates on the way
in which LOD Laundromat makes data available for further processing. Section
6 concludes and mentions future work.



2 Related Work

In this section we firstly discuss standards and best practices with respect to
Linked Data publishing. Secondly, we discuss existing Linked Data collections
and crawlers. Finally, we discuss available Linked Data catalogs and their ad-
vantages and disadvantages.

2.1 Standards

The VoID standard1 is a vocabulary to formally describe datasets. It supports
general metadata (e.g., the homepage of a dataset), access metadata (e.g., which
protocols are available), possible links with other datasets, as well as structural
metadata. Structural metadata includes exemplary resources and statistics (e.g.,
the number of triples, properties and classes).

Bio2RDF [2] presents a collection of dataset metrics that extends the struc-
tural metadata of the VoID description, and provides more detail (e.g. the num-
ber of unique objects linked from each predicate).

While such standards are useful from both the data publisher and the data
consumer perspective, uptake of VoID is lacking.2 Additionally, from a data
consumer perspective, the issue of findability through fully automated means is
not resolved.

A number of observations and statistics related to Linked Data publishing
best practices are presented in [3] and by the W3C Linked Data best practices
working group3. In addition, [5] have analyzed over a billion triples from 4 mil-
lion crawled RDF/XML documents. This analysis shows that on average 15.7%
of the RDF nodes are blank nodes. Furthermore, their analysis shows that most
Linked Data is not fully standards-compliant, corroborating the need for sani-
tizing Linked Data. However, note that this study is purely observational, and
the accessed data is not made available in a cleaned form.

2.2 Data Crawlers

Sindice [8] presents itself as a Semantic Web indexer. The main question Sindice
tries to address, is how and where to find statements about certain resources.
It does so by crawling Linked Data resources, including RDF, RDFa and Mi-
croformats, although large RDF datasets are imported on a per-instance and
manual opt-in basis. Sindice maintains a large cache of this data, and provides
access through a user interface and API. Public access to the raw data crawler
by Sindice is not available, nor is access through SPARQL, restricting the useful-
ness of Sindice for Semantic Web and Big Data research. Built on top of Sindice,
Sig.ma [10] is an explorative interactive tool, that enables Linked Data discovery.

1 http://www.w3.org/TR/void/
2 A overview of VoID descriptions that can be found by automated means, is given

by the SPARQL Endpoint Status service: http://sparqles.okfn.org/
3 http://www.w3.org/TR/ld-bp/



Similar to Sindice, Sig.ma provides an extensive user interface, as well as API
access. Even though this service can be quite useful for data exploration, the
actual, raw data is not accessible for further processing.

Contrary to Sig.ma and Sindice, data from the Billion Triple Challenge4

(BTC) 2012 are publicly available and are often used in Big Data research. The
BTC dataset is crawled from the LOD cloud5, and consists of 1.4 billion triples.
It includes large RDF datasets, as well as data in RDFa and Microformats.
However, this dataset is not a complete crawl of the Linked Open Data cloud
(nor does it aim to be), as datasets from several catalogs are missing from the
BTC. Additionally, the latest version of this dataset dates back to 2012.

Freebase [1] publishes 1.9 billion triples, taken from manual user input and
existing RDF and Microformat datasets. Access to Freebase is possible through
an API, through a (non-SPARQL) structured query language, and as a com-
plete dump of N-Triples. However, these dumps include many non-conformant,
syntactically incorrect triples. To give a concrete example, the data file that is
the dereference of the Freebase concept ‘Monkey’6 visually appears to contain
hundreds of triples, but a state-of-the-art standards-conformant parser such as
Raptor7 only extracts 30 triples. Additionally, knowing which datasets are in-
cluded in Freebase, and finding these particular datasets, is not trivial.

Similarly, LODCache8, provided by OpenLink, takes a similar crawling ap-
proach as Freebase does, but does not make a data dump available, making
actual re-use of the data difficult. However, LODCache does have a SPARQL
endpoint, as well as features such as entity URI and label lookup.

The Open Data Communities service9 is the UK Department for Communi-
ties and Local Government’s official Linked Open Data site. These datasets are
published as data dumps, and are accessible through SPARQL and API calls.
Although this service supports a broad selection of protocols for accessing the
data, the number of datasets is limited and restricted to a particular domain.

Finally, DyLDO [6] is a long-term experiment to monitor the dynamics of a
core set of 80 thousand Linked Data documents on a weekly basis. Each week’s
crawl is published as an N-Quads file. This work provides interesting insight in
how Linked Data evolves over time. However, it is not possible to easily select
the triples from a single dataset, and not all datasets belonging to the LOD
cloud are included. Another form of incompleteness stems from the fact that the
crawl is based on URI dereferences, not guaranteeing that a dataset is included
in its entirety (see section 3).

4 http://km.aifb.kit.edu/projects/btc-2012/
5 http://lod-cloud.net/
6 http://rdf.freebase.com/ns/m.08pbxl
7 Tested with version 2.0.9, http://librdf.org/raptor/rapper.html
8 http://lod.openlinksw.com/
9 http://opendatacommunities.org/



2.3 Portals

Several Linked Data portals exist, that try to improve the findability of Linked
Datasets. The Datahub10 lists a large set of RDF datasets and SPARQL end-
points, including the famous collection of datasets that is called the LOD cloud.
Datasets that are missing from the BTC collection are present in the Datahub
catalog, and the other way round. This catalog is updated manually, and there
is no direct connection to the data: all metadata comes from user input. This
increases the risk of stale dataset descriptions11 and missing or incorrect meta-
data. vocab.cc [9] builds on top of the BTC dataset. At the time of writing,
it provides a list of 422 vocabularies. Access to these vocabularies is possible
throguh SPARQL and an API. This service increases the ease of finding and
re-using existing vocabularies. It has the same incompleteness properties that
the BTC has, and does not (intend to) include instance data.

3 Context

Due to the points mentioned above, the poor data quality on the LOD cloud
poses great challenges to Big Data and SW researchers, as well as to the devel-
opers of Web-scale applications and services. In practice, this means that LOD
is less effectively (re)used than it should and could be. We first enumerate the
requirements that we pose on clean datasets in order to be easily (re)usable
(section 3.1). We then compare three approaches towards collecting LOD, and
evaluate each with respect to the completeness of their results (section 3.2).

3.1 Requirements

Besides the obvious requirements of being syntactically correct and standards-
compliant, we also pose additional requirements for how SW datasets should
be serialized and disseminated. We enumerate these additional requirements,
and briefly explain why they result in data that is more useful for Big Data
researchers and LOD developers in practice.

Easy grammar We want LOD to be disseminated in such a way that it is
easy to handle by subsequent processors. These subsequent processors are
often non-RDF tools, such as Pig [7], grep, sed, and the like. Such easy post-
processing is guaranteed by adherence to a uniform data format that can be
safely parsed in an unambiguous way, e.g., by being able to extract triples
and terms with one simple regular expression.

Speed We want to allow tools to process LOD in a speedy way. Parsing of data
documents may be slow due to the use of inefficient serialization formats (e.g.,
RDF/XML, RDFa), the occurrence of large numbers of duplicate triples, or
the presence of syntax errors that necessitate a parser to come up with
fallback options.

10 http://datahub.io/
11 For example, DBpedia links to version 3.5.1 instead of 3.9: http://datahub.io/

dataset/dbpedia (12 May 2014)



Quantity We want to make available a large number of data documents (tens
of thousands) and triples (billions), to cover a large parts of the LOD cloud.

Combine We want to make it easy to combine data documents, e.g., splitting a
single document into multiple ones, or appending multiple documents into a
single one. This is important for load job balancing in large-scale processing,
since the distribution of triples across data documents is otherwise very
uneven.

Streaming We want to support streamed processing of triples, in such a way
that the streamed processor does not have to perform additional bookkeeping
on the processed data, e.g., having to check for statements that were already
observed earlier.

Completeness The data must be a complete representation of the input dataset,
to the extent at which the original dataset is standards-compliant.

3.2 Dataset completeness

The first problem that we come across when collecting large amounts of LOD,
is that it is difficult to claim completeness while collecting LOD. Since there
are alternative approaches towards collecting large volumes of LOD, we give an
overview of the incompleteness issues that arise for each of those alternatives.
At the moment, three options exist for collecting large volumes of LOD:

1. Crawling resources
2. Querying endpoints
3. Downloading datadumps

Resource crawlers use the dereferenceability of IRIs in order to find LOD.
This approach has the following deficiencies:

1. Datasets that do not contain dereferenceable IRIs are ignored. In [4], 7.2%
of the crawled IRIs were not dereferenceable.

2. For IRIs that can be dereferenced, back-links are often not included [5] As a
consequence of this, even datasets that contain dereferenceable IRIs exclu-
sively can still have parts that cannot be reached by a crawler.

3. Even for datasets that have only dereferenceable IRIs that include back-links,
the crawler can never be certain that the entire dataset has been crawled.

Querying endpoints provides another way of collecting large volumes of LOD.
The disadvantages of this approach are:

1. Datasets that do not have a query endpoint are ignored. While hundreds of
SPARQL endpoints are known to exist today, there are at least thousands
of Linked Datasets.

2. Datasets that have a custom API and/or that require an API key in order to
pose questions, are not generally accessible and require either appropriation
to a specific API or the creation of an account in order to receive a custom
key.



3. For practical reasons, otherwise standards-compliant SPARQL endpoints put
restrictions on either the number of triples that can be retrieved or the
number of rows that can be involved in a sort operation that is required for
paginated retrieval.12 This makes dataset retrieval incomplete.

4. Existing LOD observatories show that SPARQL endpoint availability is quite
low.13 This may be a result of the fact that keeping a SPARQL endpoint
up and running requires considerably more resources than hosting a Web
document.

Downloading data dumps is the third approach to collecting large volumes
of LOD. Its disadvantages are:

1. Datasets that are not available as datadump are ignored.
2. Datasets that have only part of their documents available for download are

incomplete.

With the LOD Laundromat we want to clean existing datasets, not create a new
dataset that is a collection of parts coming from different datasets (like BTC,
for instance). For most datasets for which a SPARQL endpoint exists, we are
also able to find a datadump version. We therefore believe that downloading
datadumps is the best approach for collecting large amounts of data documents
for cleaning.

4 Implementation: the LOD Washing Machine

In the previous section we have describe the requirements that we believe Linked
Datasets should fulfill in order to be more useful in practice. We also explained
why we have chosen to download datadumps is order to guarantee the best
completeness. Here, we will make the aforementioned requirements concrete in
such a way that they can be automatically applied to dirty Linked Datasets. The
part of the LOD Laundromat that performs automated data cleaning is called
the LOD Washing Machine.14

Step A: Collect URLs that denote dataset dumps Before we start laundrying
data, we need some dirty data to fill our LOD Laundry Basket. The LOD
Washing Machine does not completely automate the search for the initial seed
points for collecting LOD. The are four reasons for this. Firstly, catalogs that
collect metadata descriptions must be accessed by website-specific APIs. Sec-
ondly, standards-compliant metadata descriptions are stored at multiple loca-
tions and cannot always be found by Web search operations that can be auto-
mated. Thirdly, metadata descriptions of datasets, whether standards-compliant

12 E.g., Virtuoso, an often used triple store, by default limits both the result set size
and the number of rows within a sorting operation.

13 http://sparqles.okfn.org/
14 Code available at https://github.com/LODLaundry/LOD-Washing-Machine.



or catalog-specific, are often outdated (e.g., pointing to an old server) or incom-
plete. Finally, many datasets are not described anywhere and require someone
to know the server location where the data is currently stored.

Due to these reasons, the LOD Washing Machine relies on catalog-specific
scripts that collect such seed URLs for washing. An example of this is the CKAN
API15, which provides access to the datasets described in the Datahub, including
the datasets in the original LOD cloud. This means that URLs that are not
included in a LOD catalog or portal are less likely to be washed by the LOD
Washing Machine. In addition, we have added several seed points by hand for
datasets that we know reside at specific server locations. Anyone can queue
washing jobs by adding such seed URLs to the LOD Laundry Basket through
the LOD Laundromat Website.

Some URL strings – e.g., values for the “URL” property in a catalog – do not
parse according to the RFC 3986 grammar.16 Some URL strings are parsed as
IRIs but not as URLs, mostly because of unescaped spaces. Some URL strings
parse per RFC 3986, but have no IANA-registered scheme17, or the file scheme
which is host-specific and cannot be used for downloading. The LOD Washing
Machine uses only URLs that parse per RFC 3986 (after IRI-to-URL conversion)
and that have an IANA-registered scheme that is not host-specific.

Step B: Connect to the hosting server When processing the list of URLs from
the previous step, we must be careful with URLs that contain the same authority
part, since they are likely to reside at the same server. Since some servers do not
accept multiple (near) simultaneous requests from the same IP, we must avoid
parallel processing of such URLs. The LOD Washing Machine therefore groups
URLs with the same authority and makes sure they get processed in sequence,
not in parallel. This is implemented by handling URLs with the same authority
in a single thread.

At the level of TCP/IP, not all URL authorities denote a running server or
host. Some running servers do not react to requests (neither reject nor accept),
and some actively reject establishing a connection. Some connections that are
established are broken off during communication.

Step C: Communicate with the hosting server Once a connection has been es-
tablished over TCP/IP, the LOD Washing Machine sends an HTTP request
with SSL verification (for secure HTTP) and an accept header that includes a
preference for LOD content types. This includes standardized content types and
content types that occur in practice.

Some requests are unsuccessful, receiving either a server, existence, or per-
mission error. Some requests are unsuccessful due to redirection loops.

Step E: Unpack archived data Many Linked Datasets are contained in archives.
The LOD Washing Machine supports the archive filters and formats that are

15 http://ckan.org/
16 http://tools.ietf.org/html/rfc3986
17 http://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml



supported by library libarchive18. The LOD Washing Machine accesses archives
in a stream and opens additional streams for every archive entry it contains. Since
archive entries can themselves be archives, this procedure is nested, resulting in
a tree of streams. The root node of the tree is the stream of the original archive
file, the leaf nodes are streams of non-archived files, and the other non-leaf nodes
are streams of intermediate archived files.

Some archives cannot be read by libarchive, which throws an exception. We
have not been able to open these archives with any of the standard unarchiv-
ing tools on Linux. Consequently, the LOD Washing Machine gives up on such
archived files, but does report the exception that was thrown.

Step F: Guess serialization format In order to parse the contents of the textual
data that resides in the leaf nodes of the stream tree, we need to know the
grammar of that data. The LOD Washing Machine uses content types to denote
the grammar that is used for parsing. There are various ways in which the
content type of a streamed file can be assessed. The most reliable way is to
parse the whole file using each of the RDF serialization parsers, and take the
one that emits the least syntax errors and/or reads the most valid RDF triples.
A theoretical example of why one needs to parse the whole file, not just a first
segment of it, can be given with respect to the difference between the Turtle
and TriG formats. This difference may only become apparent in the last triple
that appears in the file, by the occurrence of curly brackets (indicating a named
graph).

Unfortunately, parsing every dataset with every parser is inefficient (CPU)
and requires either local storage of the whole file (disk space) or multiple down-
loads of the same file (bandwidth).

In addition, we make the observation that the standardized RDF serialization
formats occur in two families: XML-like (RDF/XML, RDFa) and Turtle-like
(Turtle, TriG, N-Triples, N-Quads). The distinction between these two families
can be reliably made by only looking at an initial segment of the file.

In order to keep the hardware footprint low, the LOD Washing Machine tries
to guess the content type of a file based on a parse of only a first chunk of that
file, in combination with the extension of the file (if any) and the content type
header in the HTTP response message (if any). Using a look-ahead function on
the stream, the LOD Washing Machine can use the first bytes on that stream
in order to guess its content type, without consuming those bytes so that no
redownload is necessary. The number of bytes available in the look-ahead is the
same as the stream chunk size that is used for in-memory streaming anyway.

As explained above, this method may result in within-family mistakes, e.g.,
guessing Turtle for TriG or guessing N-Triples for N-Quads. In order to reduce
the number of within-family mistakes, we use the content type and file extension.
If these denote serialization formats that belong within the guessed family, we
use that format. Otherwise, we use the most generic serialization format within
the guessed family.

18 https://code.google.com/p/libarchive/



This approach ensures that the LOD Washing Machine uses a fully streamed
pipeline and relatively few hardware resources.

Step G: Syntax errors while parsing RDF serializations The LOD Washing Ma-
chine parses the whole file using standards-conforming grammars. For this it uses
the parsers from the SemWeb library [11]. This library passes the RDF 1.1 test
cases and is actively used in SW research and applications. Using this library,
the LOD Washing Machine is able to recognize different kinds of syntax errors
and recover from them during parsing. We enumerate some of the most common
syntax errors the LOD Laundromat is able to identify:

– Bad encoding sequences (e.g., non-UTF-8).
– Undefined IRI prefixes.
– Missing end-of-statement characters between triples (i.e., ‘triples’ with more

than three terms).
– Non-escaped, illegal characters inside IRIs.
– Multi-line literals in serialization formats that do not support them (e.g.,

multi-line literals that are only legal in Turtle, also occur in N-Triples and
N-Quads).

– Missing or non-matching end tags (e.g., RDF/XML).
– End-of-file occurrence within the last triple (probably indicating a mistake

that was made while splitting files).
– IRIs that no not occur in between angular brackets (Turtle-family).

The LOD Washing Machine reports each syntax error it comes across. For data
documents that contain syntax errors, there is no formal guarantee that a one-
to-one mapping between the original document and a cleaned sibling document
exists. This is an inherent characteristic of dirty data and the application of
heuristics in order to clean as many stains as possible. In the absence of a formal
model describing all the syntactic mistakes that can be made, recovery from
arbitrary syntax errors is more of an art than a science. We illustrate this with
the following example:

ex : a1 ex : a2 $”” ex : b1 ex : b2 ex : b3 .
ex : c1 ex : c2 ex : c3 .
. . .
ex : z1 ex : z2 ex : z3 .

””” .

A standards-compliant RDF parser will not be able to parse this piece of syntax
and will give a syntax error. A common technique for RDF parsers is to look
for the next end-of-triple statement (i.e., the dot at the end of the first line),
and resume parsing from there. This results in parsing the collection of triples
starting with 〈rdf:c1, rdf:c2, ex:c3〉 and ending with 〈rdf:z1, rdf:z2, ex:z3〉.
The three double quotes that occur at the end of the code sample will result in
a second syntax error.

However, using other heuristics may produce very different results. For in-
stance, by using minimum error distance, the syntax error can also be recovered



by replacing the dollar sign with a double quote sign. This results in a single
triple with a unusually long, but standards-compliant, literal term.

Step H: De-duplicate RDF statements The LOD Washing Machine loads the
parsed triples into a memory-based triple store. By loading the triples into a
triple store, it performs deduplication of interpreted RDF statements. Dedu-
plication cannot be performed without interpretation, i.e., on the syntax level,
because the same RDF statement can be written in different ways. Syntacti-
cally, the same triple can look different due to the use of character escaping, the
use of extra white spaces, newlines and/or interspersed comments, the use of
different/no named prefixes for IRIs, and abbreviation mechanisms in serializa-
tion formats that support them (e.g., RDF/XML, Turtle). Another source of the
many-to-one mapping between syntax and semantics occurs for RDF datatypes /
XML Schema 1.1 datatypes, for which multiple lexical expressions can map onto
the same value.19 For example, the lexical expressions 0.1 and 0.10000000009
map to the same value according to data type xsd:float, but to different values
according to data type xsd:decimal.

While reading RDF statements into the triple store, the contents of different
data documents are stored in separate transactions, allowing the concurrent
loading of data in multiple threads. Each transaction represents an RDF graph
or set of triples, thereby automatically deduplicating triples within the same file.

Step I: Save RDF in a uniform serialization format Once the triples are parsed
using an RDF parser, and the resulting RDF statements are loaded into mem-
ory without duplicates, we can use a generator of our choice to serialize the
cleaned data. We want our generator to be compliant with existing standards,
and we want to support further processing of the data, as discussed in section
3.1. The LOD Washing Machine produces data in a canonical format that en-
forces a one-to-one mapping between data triples and file lines. This means that
the end-of-line character can be reliably used in subsequent processing, such
as pattern matching (e.g., regular expressions) and parsing. This also means
that data documents can be easily split without running the risk of splitting
in-between triples. Furthermore, the number of triples in a graph can be easily
and reliably determined by counting the number of lines in a file describing that
graph. Secondly, the LOD Washing Machine leaves out any header information.
This, again, makes it easy to split existing data documents into smaller parts,
since the first part of the file is not treated specially due to serialization-specifc
header declarations (e.g., RDF/XML, RDFa) and namespace definitions (e.g.,
RDF/XML, Turtle). Thirdly, the LOD Washing Machine replaces all occurrences
of blank nodes with well-known IRIs20, in line with the RDF 1.1 specification21.
Effectively, this means that blank nodes are interpreted as Skolem constants, not

19 http://www.w3.org/TR/xmlschema11-2/
20 https://tools.ietf.org/html/rfc5785
21 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/\#

section-skolemization



as existentially quantified variables. The Skolem constant is an IRI that is based
on the URL that was used to stream the RDF data from, thereby making it a
universally unique name at the moment of processing.22 This makes it easy to
append and split data documents, without the need to standardize apart blank
nodes that originate from different graphs.

From the existing serialization formats, N-Triples and N-Quads come closest
to these requirements. Since the tracking of named graphs is out of scope for
our initial version of the LOD laundry (see section 6), we use a canonical form
of N-Triples that excludes superfluous white space (only one space between the
RDF terms in a triple and one space before the end-of-triple character), superflu-
ous newlines (only one newline after the end-of-triple character), and comments
(none at all). Newlines that occur in multi-line literals, supported by some seri-
alization formats, are escaped according to the N-Triples 1.1 specification. Also,
simple literals are not written, always adding the XML Schema string datatype
explicitly.

Step J: VoID closure After having stored the data to a canonical format, we
make use of the fact that the valid triples are still stored in memory, by perform
a quick query on the memory store. In this query we derive any triples that
describe Linked Datasets. Specifically, we look for occurrences of predicates in
the VoID namespace. We store these triples in a publicly accessible metadata
graph that can be queried using SPARQL. For each dataset described in VoID
triples, we follow links to datadumps (if present), add them to the LOD Laundry
Basket, and clean those datadumps by using the LOD Washing Machine as
well. Since a dataset may describe a dataset that describes another dataset, this
process is recursive.

Step K: Consolidate and disseminate datasets for further processing Since we
want to incentivise the dataset creators to improve their adherence to guidelines,
we keep track of all the mistakes that were discussed in this section. The mistakes
(if any) are asserted together with some basic statistics, e.g. number of triples,
number of bytes processed, in the publicly queryable metadata graph. For syntax
errors we include the line and column number at which the error occurred,
relative to the original file. This makes it easy for the dataset maintainers to
improve their data and turn out cleaner in a next wash, since the metadata
descriptions are automatically updated at future executions of the LOD Washing
Machine.

5 The LOD Laundromat Web service

When the LOD Washing Machine has cleaned a data document, it is ironed and
folded and made available on a publicly accessible Website that provides addi-

22 When a new file is disseminated at the same URL at a later point in time, the same
Skolem constant may be used to denote a different blank node. Using skolemization,
this becomes an instance of the generic problem that IRIs can denote different things
at different times, as the data document is updated.



tional support for data consumers. We now describe the components that make
up this Website and lift out the support features that make LOD Laundromat
a good source for finding large volumes of high-quality Linked Data.

5.1 LOD Wardrobe

The LOD Wardrobe (Figure 1) is where the cleaned datasets are disseminated
for human data consumers. The data documents are listed in a table that can be
sorted according to various criteria (e.g., cleaning data, number of triples). For
every data document, a row in the table includes links to both the old (dirty) and
new (cleaned) data files, as well as a button that brings up a pop-up box with
all the metadata for that data document. Furthermore, it is easy to filter the
table based on a search string and multiple rows from the table can be selected
for downloading at the same time.

Fig. 1. The LOD Wardrobe is available at http://lodlaundromat.org/wardrobe

5.2 SPARQL endpoint

All the metadata collected during the cleaning process is stored in an RDF graph
that is publicly accessible through the SPARQL endpoint http://lodlaundromat.



org/sparql. For human data consumers we deploy the feature-rich SPARQL ed-
itor Yasgui.23 For machine consumption the SPARQL endpoint can be queried
algorithmically. For instance, a SPARQL query can return URLs for download-
ing all clean data documents with over one million syntactically correct triples.
In this way LOD Laundromat provides a very simple interface for running Big
Data experiments. The metadata stored by the LOD Washing Machine includes
information such as the number of triples in a dataset:

– the number of removed duplicates,

– the original serialization format,

– any VoID descriptions that were found,

– various kinds of syntax errors,

– and more.

The metadata that the LOD Wardrobe publishes is continuously updated when-
ever new cleaned laundry comes in.

5.3 Visualizations

Besides access to the datasets, the LOD Laundromat also provides real-time
visualizations of the crawled data. These visualizations are small JavaScript
widgets that use SPARQL queries on the metadata SPARQL endpoint.

Purely for illustrative purposes, we include a snapshot of such a widget in
Figure 2. For a collection of 1.276 cleaned documents (containing approximately
2 billion triples) this widget shows the serialization format that was used to parse
the original file. The majority of documents from this collection, 59.2%, are seri-
alized as RDF/XML. Turtle and RDFa amount to 29.5% and 6.7% respectively.
Only 4.4% of all documents are serialized as N-Triples.

As another example of the kinds of queries that can be performed on the
SPARQL endpoint, we take the HTTP Content-Length header. Values for
this header are often set incorrectly. Ideally, a properly set Content-Length

header would allow data consumers to retrieve data more efficiently, e.g., by
load-balancing data depending on the expected size of the response. However,
our results show that 32% of the documents return an invalid content length
value, thereby showing that in practice it is difficult to reliably make use of this
property.

5.4 LOD Laundry Basket

In order to extend our collection of datasets over time, users can add seed URLs
to the LOD Laundry Basket. Seed points can be either URLs that point to VoID
descriptions, or to data dumps directly. Seed locations can be added through a
Web form or through a direct HTTP GET request.

23 http://yasgui.laurensrietveld.nl/



XML (59.2%)

Turtle (29.5%)

RDFa (6.7%)
NTriples (4.4%)

TOTAL
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documents

Fig. 2. RDF serialization formats for a collection of RDF documents. Illustrative ex-
ample of a visualization widget at http://lodlaundromat.org/visualizations.

6 Conclusion

Existing research shows that many LOD does not comply with existing stan-
dards. To deal with this issue, we have presented LOD Laundromat, a uniform
way of publishing other peoples dirty data. Using LOD Laundromat, we publish
standards- and guidelines-compliant datasets that are siblings of existing, id-
iosyncratic datasets. LOD Laundromat implements a Linked Data cleaner that
continuously crawls for additional datasets; the amount of data that we pub-
lish (over ten billion triples at the time of writing) already surpasses that of
existing data collections, such as the Billion Triple Challenge. In addition, the
LOD Laundromat publishes metadata for every cleaned document on a publicly
accessable Web site, and through machine-accessable Web services. Because any-
body can drop their dirty data in the LOD Laundry Basket, the coverage of the
LOD Laundromat will increase over time. All datasets are published in a very
simple canonical form of N-Triples, which makes it easy for post-processing tools
to parse, possibly in streamed form. By using the LOD Laundromat, data con-
sumers do not have to worry about different serialization formats, syntax errors,
encoding issues, or triple duplicates. In doing so, LOD Laundromat can act as an
enabler for Big Data and SW research, as well as a provider of data for Web-scale
applications.

Although the LOD Laundromat offers many advantages for data consumers
today, we aim to further increase the level of support. Fistly, the metadata we
collect does not yet make use of existing vocabularies, like DCAT24, VoID, and
Prov-O25. Secondly, LOD Laundromat currently disseminates datasets in the
N-Triples serialization format, in which it is not possible to represent multiple
graphs. Even though the use of multiple graphs within the same data document is

24 http://www.w3.org/TR/vocab-dcat/
25 http://www.w3.org/TR/prov-o/



not very common today, the few datasets for which this is used would be better
supported by the N-Quads format. This also requires the scope of the triple
deduplication phase to be narrowed down to graphs. Thirdly, not all Linked
Data is Open. Some data may be licensed under conditions that do not allow
free data reuse. However, restricting licenses are difficult to detect by automated
means, since very few datasets contain explicit licensing conditions. Still, in
case a dataset does explicitly mention a license that is not defined open by the
Open Data Commons26, we would like the LOD Washing Machine to skip it.
Finially, we may choose to store multiple versions of the collection of cleaned
datasets as different ‘snapshots’. Such snapshots may, for instance, improve the
reproducibility of LOD experiments.
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