
Frank :
Frank: The LOD Cloud at Your Fingertips?

Wouter Beek1 and Laurens Rietveld1

Dept. of Computer Science, VU University Amsterdam, NL
{w.g.j.beek,laurens.rietveld}@vu.nl

Abstract. Large-scale, algorithmic access to LOD Cloud data has been
hampered by the absence of queryable endpoints for many datasets, a
plethora of serialization formats, and an abundance of idiosyncrasies such
as syntax errors. As of late, very large-scale — hundreds of thousands of
document, tens of billions of triples — access to RDF data has become
possible thanks to the LOD Laundromat Web Service. In this paper
we showcase Frank , a command-line interface to a very large collection
of standards-compliant, real-world RDF data that can be used to run
Semantic Web experiments and stress-test Linked Data applications.

1 Introduction

Let’s be frank: The Semantic Web is a big and dangerous place. Many researchers
and application programmers spend a fair amount of their researching and appli-
cation programming time by handling various serialization formats and juggling
with syntax errors and other dataset-specific idiosyncrasies.

For instance, one of the authors of this paper has tried to run an evaluation
on Freebase, one of the most valuable Linked Datasets out there. A human agent
can assess that the Freebase dereference of the ‘monkey’ resource, http://rdf.
freebase.com/ns/m.08pbxl, consists of approximately 600 statement. However, a
state-of-the art RDF parser such as Rapper1 is able to retrieve 32 triples, slightly
more than 5% of the actual monkey info. Such results are not uncommon, even
among often-used, high-impact datasets such as Freebase.

The problem of idiosyncrasies within one dataset is worsened by the fact that
different datasets exhibit different deviations from RDF and Web standards. This
means that a custom script that is able to run a Semantic Web evaluation on one
dataset may fail to perform the same job for another, requiring ad hoc and thus
human-supervised operations to be performed. We believe that this is one of the
reasons why most evaluations in Semantic Web research publications are run on
only a handful of, often the same, datasets (DBpedia, Freebase, Semantic Web
Dog Food, SP²Bench, etc.).2 It is simply impractical to run a Semantic Web

? This work was supported by the Dutch national program COMMIT
1 Version 2.0.14, retrieved from http://librdf.org/raptor/rapper.html.
2 Based on the observations from the previous paragraph, we can only guess as to
what it actually means to run an evaluation against a dataset like Freebase. Does it
mean that the evaluation was run against its < 5% syntactically correct triples?

http://rdf.freebase.com/ns/m.08pbxl
http://rdf.freebase.com/ns/m.08pbxl
http://librdf.org/raptor/rapper.html


algorithm against tens of thousands of datasets. Notice that the challenge here
is not scalability per se, as most datasets on the Semantic Web are actually quite
small (much smaller than DBpedia, for instance). The problem seems to be with
the heterogeneity of data formats and idiosyncrasies.

In [1] the LOD Laundromat was presented, an attempt to clean as many
Linked Datasets as possible into a single, uniform and standards-compliant for-
mat. The LOD Laundromat has now (re)published a wealth of Linked Data in
a format that can be processed by machines without having to pass through a
dataset-specific and cumbersome data cleaning stage.

At the time of writing the LOD Laundromat disseminates over 600,000 data
documents containing over 30,000,000,000 triples. In [4] the LOD Laundromat,
which had been serving clean data files until that point, was combined with the
Linked Data Fragments (LDF) paradigm [5], thereby offering live query access
to its entire collection of cleaned datasets.

By (re)publishing very many datasets in exactly the same, standards-compliant
way, the LOD Laundromat infrastructure supports the evaluation of Seman-
tic Web algorithms on large-scale, heterogeneous and real-world data. How-
ever, until now the LOD Laundromat, together with its Linked Data Frag-
ments extension, has been disseminated as a collection of Web Services (http:
//lodlaundromat.org) where clean datasets can be downloaded and queried. In
addition, metadata about the cleaning process and the structural properties of
the data can be queried via a SPARQL endpoint. While this is a good interface
for some use cases, e.g. downloading a specific data document, it is not suitable
for others. For instance, using the Web Services it is relatively difficult to evalu-
ate a Semantic Web algorithm against thousands of datasets, the main use case
we are aiming for in this paper.

Moreover, it is precisely these large-scale use cases in which the LOD Laun-
dromat excels. This is why we have created Frank , the computational companion
to the LOD Laundromat Website and Web Services. Frank allows the same op-
erations to be more easily performed on a larger scale and with added flexibility.

2 How to be Frank

In this section we show some of the key features of Frank .3 For brevity, we
sometimes abbreviate MD5 hashes and use common RDF prefix shortening in
the results.

2.1 Data retrieval

Frank makes it easy to pose queries against the LOD Cloud, such as “Give me
an arbitrary triple, Frank.” This query is executable via the frank statements

command, which returns a stream of RDF statements serialized as plain N-
Triples or N-Quads.

Access to a single statements is possible by using the power of Bash streams
and pipes:

3 See https://github.com/LODLaundry/Frank for the source code.

http://lodlaundromat.org
http://lodlaundromat.org
https://github.com/LODLaundry/Frank


$ frank statements | head -n 1

<http :// csarven.ca/#i> foaf:givenName "Sarven" .

In the above example, Frank is asked for any instantiation for the subject,
predicate and object. The results are returned in a stream of arbitrary length,
containing an arbitrary number of solutions. Since Frank uses the standard con-
ventions for output handling, other processes can utilize the resultant triples
by simply reading from standard input. Since Frank returns answers with any-
time behavior, i.e., one-by-one, processes that utilize its output are able to run
flexibly. Specifically, no cumbersome writing to file and/or waiting for complete
result sets is needed.

We can ask for more than arbitrary triples though, as any Simple Graph
Pattern [2] can be used to query LOD Laundromat data. For example, in order
to retrieve only persons:

$ frank statements \

--predicate rdf:type \

--object foaf:Person \

--showGraph \

| head -n 2

<http :// csarven.ca/#i> rdf:type foaf:Person ll:85d...33c.

dbp:Computerchemist rdf:type foaf:Person ll:0fb ...813.

Notice that we have instantiated the predicate and object terms and have
requested the graph from which a triple originates. Or, in this case, the graph
from which a person was retrieved. These graphs are the LOD Laundromat
identifiers that stand for the cleaned documents containing the respective FOAF
persons.

To query a specific graph (or a specific collection of graphs), these LOD Laun-
dromat document identifiers can be added as arguments to frank statements:

$ frank statements

--predicate rdf:type \

--object foaf:Person \

http :// lodlaundromat.org/resource /85d...33c

<http :// csarven.ca/#i> rdf:type foaf:Person .

...

2.2 Data documents

Besides querying for individual triples, Frank can also load entire data docu-
ments. The advantage of loading documents, besides being a bit quicker, is that
a document is a collection of triples this is published with a certain intent. Even
though data documents can — in theory — be assembled randomly, in pratice it
is often assumed that there is some cohesion present in a document that cannot
be found in a random collection of triples. (This may be called a social aspect
of RDF data.)

The following command prints every LOD Laundromat download URI.

$ frank documents --downloadUri

http :// download.lodlaundromat.org/fcf ... b92



http :// download.lodlaundromat.org /134...344

http :// download.lodlaundromat.org/d4a ... b85

http :// download.lodlaundromat.org/0b8... ade

http :// download.lodlaundromat.org/f08 ...66f

...

The results of frank documents can be filtered with some basic options. For
instance, in the following data documents are filtered by the number of (unique)
triples that appear in them:

$ frank documents --downloadUri \

--minTriples 100000

--maxTriples 1000000

http :// download.lodlaundromat.org/bd0 ...2a5

...

To fetch the triples for these filtered datasets, simply pipe the results of
verb—frankDocuments— to frank statements:

$ frank documents --resourceUri \

--minTriples 100000

--maxTriples 1000000

| frankStatements

dbp :1921 Novels rdfs:label "1921 novels ".

dbp :1921 Operas rdfs:label "1921 operas ".

...

2.3 Metadata

frank meta allows metadata descriptions of data documents to be retrieved and
returned in N-Triples format. For example, the following returns metadata for
one particular document.

$ frank documents --resourceUri | frank meta

ll:85d...33c ll:triples "54"^^ xsd:int .

ll:85d...33c llo:added "2014 -10 -10 T00 :23:56"^^ xsd:dateTime .

...

3 Implementation

Frank is implemented as a single Bash script, which allows piping of results to
other processes. Figure 3 shows the relationships between Frank and the LOD
Laundromat Web Services. We now give implementation details of the basic
interface commands that were illustrated in Section 2.

Streamed triple retrieval frank statements allows individual statements
to be retrieved. Its command-line flags --subject, --predicate, and --object

mimics the expressivity of the Linked Data Fragment Web API. LDF provide
a self-descriptive API which uses pagination in order to serve large results in
smaller chunks, making streamed processing possible. frank statements inter-
faces with the Linked Data Fragments API for a given data document, or it
enumerates all available LDF endpoints (using frank documents). For perfor-
mance reasons, a frank statements call without subject, predicate or object



Fig. 1. The implementation architecture for Frank and its dependence on the LOD
Laundromat Web Services.

TPF SPARQLCompressed Data 
Dumps

LOD Laundromat

./frank documents ./frank meta./frank statements

My Algorithm

Frank

flag retrieves the triples directly from the published LOD Laundromat Gzip files.
For each LDF endpoint it handles the pagination settings in order to ensure a a
constant stream of triples. The LDF API is able to answer triple pattern requests
efficiently by using the Header Dictionary Triples4 (HDT) technology. HDT is
a binary, compressed, and indexed serialization format that facilitates efficient
browsing and querying of RDF data at the level of Simple Graph Patterns. HDT
files are automatically generated for all data documents that are disseminated
by the LOD Laundromat backend.

Streamed document retrieval frank documents allows individual docu-
ments to be retrieved. It interfaces with the SPARQL backend in order to
find data documents that e.g. adhere to the given size restrictions, i.e., at least
--minTriples and at most --maxTriples triples. It identifies a data document
in the following two ways:

1. The URI from which the data document, cleaned by the LOD Laundromat,
can be downloaded (--downloadUri)

2. The Semantic Web resource identifier assigned by LOD Laundromat for this
particular document (--resourceUri)

When neither --downloadUri nor --resourceUri are passed as arguments Frank
returns both separated by white-space.

The clean data documents are disseminated by the LOD Laundromat as
Gzipped N-Triples or N-Quads. The statements are unique within a document
so no bookkeeping with respect to duplicate occurrences needs to be applied.
Statements are returned according to their lexicographic order. These statements
can be processed on a one-by-one basis which allows for streamed processing by
Frank .
4 See http://www.rdfhdt.org/.

http://www.rdfhdt.org/


Metadata frank meta retrieves the metadata description of a given data docu-
ment. It interfaces with the SPARQL endpoint of LOD Laundromat and returns
N-Triples that contain provenance for that particular resource, and a set of VoID
statistics generated by the LOD Laundromat. [3]

4 Conclusion & Future work

Algorithmic access to the LOD Cloud used to be cumbersome to implement,
required the use of crawling or incomplete catalogs, and often needed ad-hoc
intermediate human-supervised operations to deal with deviations from RDF
and Web Standards. Now — thanks to Frank and the LOD Laundromat—, such
algorithmic access is reduced to a single Bash line.

The current version of Frank focuses on performing data consumption tasks.
It allows triples and documents to be retrieved from the LOD Laundromat. It
does not, at the moment, allow data to be added for cleaning. This can be done
though the LOD Basket Web Interface (http://lodlaundromat.org/sparql/).
Frank does not yet allow metadata to be queried in non-trivial ways. This can be
done though the SPARQL endpoint (http://lodlaundromat.org/basket/) which
stores the scraping metadata as well as the structural metadata [3]. Better sup-
port in these areas may be added in future versions, depending on whether such
support is needed in practice.

Frank currently allows Simple Graph Patterns to be queried. While it is
technically possible to collate Simple Graph Patterns together into Basic Graph
Patterns [2], complex queries cannot not yet be efficiently evaluated. The reason
for this is that Linked Data Fragment requests are performed in the sequence in
which they are supplied by the user and this sequence may not be optimal. In
future research we want to allow complex queries to be optimized before being
sent to the LOD Laundromat backend, thereby making it possible to perform
queries of arbitrary complexity in a more efficient manner.

References

1. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laun-
dromat: A uniform way of publishing other people’s dirty data. In: The Semantic
Web–ISWC 2014, pp. 213–228. Springer (2014)

2. Harris, S., Seaborne, A.: SPARQL 1.1 query language (March 2013)
3. Rietveld, L., Beek, W., Schlobach, S.: LOD in a box: The C-LOD meta-dataset (Un-

der submission), http://www.semantic-web-journal.net/system/files/swj868.
pdf

4. Rietveld, L., Verborgh, R., Beek, W., Sande, M.V., Schlobach, S.: Linked data as a
service: The Semantic Web redeployed. In: The Extended Semantic Web Conference
– ESWC. Springer (2015)

5. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying
datasets on the web with high availability. In: The Semantic Web–ISWC 2014, pp.
180–196. Springer (2014)

http://lodlaundromat.org/sparql/
http://lodlaundromat.org/basket/
http://www.semantic-web-journal.net/system/files/swj868.pdf
http://www.semantic-web-journal.net/system/files/swj868.pdf

	 Frank: Frank: The LOD Cloud at Your Fingertips 

